Solutions to Challenge Corner of 6th issue of IMOment

1. How many positive divisors does one googol have? (Please see our interview with Professor Jacob Lurie in the current issue for the definition of a googol.)

Solution: Recall that one googol is $10^{100} = 2^{100} \times 5^{100}$. Each positive divisor of it is uniquely determined by the exponent of 2 and the exponent of 5 in the divisor. Each of these two choices admits 101 possibilities. Hence the answer is $101 \times 101 = 10201$.

2. Consider a 2015×2015 chessboard. The 1×1 square at the top-left corner is removed. Can the remaining part be tiled with 1×4 and 4×1 rectangles without overlap?

Solution: Write the complex number i^{x+2y} in the square in the x^{th} row and y^{th} column, for all x, y. Then the numbers covered by each 1×4 or 4×1 rectangle sum to 0. However, one may check that the numbers in the remaining part of the chessboard do not sum to 0.

3. Find the radius of the circumcircle of a triangle with side lengths 5, 5, 6.

Solution: Let the triangle be *ABC*, with *BC* being the side of length 6. Let *D* be the midpoint of *BC*. By Pythagoras' theorem, AD = 4. By symmetry, the circumcenter *O* of the triangle lies on the line *AD*, and is inside the triangle since angle *BAC* is acute. Let the circumradius of the triangle be *R*. Since $OD^2 + BD^2 = OB^2$, we have $(4-R)^2 + 3^2 = R^2$, which gives $R = \frac{25}{8}$.

4. If x, y, z are positive real numbers such that xyz = x + y + z, prove that there exists a triangle *ABC* such that $x = \tan A$, $y = \tan B$, and $z = \tan C$.

Solution: Since *x*, *y*, *z* are positive, there exist real numbers *a*, *b*, *c* between 0 and $\pi/2$ such that $x = \tan a$, $y = \tan b$, and $z = \tan c$. From the given condition we have $\tan c = \frac{\tan a + \tan b}{\tan a \tan b - 1} = -\tan(a+b) = \tan(-a-b)$ and hence $c = k\pi - a - b$ for some integer *k*. Since $0 < a, b, c < \pi/2$, we have $c = \pi - a - b$ and the desired result follows.

List of awardees:

Name of Student	Name of School
LAI Chun Yin	St. Bonaventure College & High School
Jeffrey TSE	Pui Ching Middle School
HUI Chun Wai	Y.O.T. Tin Ka Ping Primary School
CHAU Wing Ho	Tsuen Wan Government Secondary School
NG Ting Chun	Christian Alliance S C Chan Memorial College

Awardees will also be notified with a separate e-mail.