
Solutions to Challenge Corner, 1st Issue of IMOment 
 
 
1. In this problem, a positive integer is said to be strange if it has an 

odd number of distinct positive divisors. For example, 4 is strange 

because it has 3 distinct positive divisors, namely 1, 2 and 4, while 

10 is not strange because it has 4 distinct positive divisors, namely 1, 

2, 5 and 10. How many strange numbers are there among 1, 2, …, 

2016?  

 
Solution: If a is a positive divisor of a positive integer n, then so as 

 
b 

n

a
, and 

n

b
 a. Thus the positive divisors of n can be paired up, so 

n always has an even number of positive divisors, unless for some 

positive divisor a, it turns out that 
n

a
 a , i.e. n  a2 is a perfect 

square. Among 1, 2, …, 2016, there are 44 perfect squares, and 
hence there are 44 strange numbers.  

 
 

2. Given that the expression below represents a real number, find it.  
 

2 2 2 2 ...  
 
 

Solution: Let x  2 2 2 2 ... . Then x  2 x , so 

x2  x  2  0. Solving, x  2 or x  1 (rejected). 
 
  



3. Assume that on a certain social networking website, there is no limit 

a user’s number of friends, and friendship is mutual (i.e. if A is a 

friend of B, then B is also a friend of A). Prove that there are two 

Mathbook users with the same number of Mathbook friends.  

 

Solution: Suppose there are a total of n Mathbook users. Then each 

user’s number of friends is between 0 and n1 (inclusive). If no two 

users have the same number of friends, the number of friends of the n 

users must be 0, 1, …, n1. Now, the user with 0 friends does not 

have any friends while the user with n1 friends is friends with 

every other user, a contradiction.  

 
4. Let P be a point in the plane of ABC . Let X be a point in the plane 

such that the midpoint of PX is the midpoint of BC. Let Y be a point 
in the plane such that the midpoint of PY is the midpoint of CA. Let Z 
be a point in the plane such that the midpoint of PZ is the midpoint 
of AB. Show that AX, BY and CZ meet at a point.  (Hint: Try the 
method introduced in the article on coordinate geometry in this 
issue!) 

 
Solution: We use coordinate geometry. Let A  a
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Hence the midpoint of CZ is 
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Similarly, the midpoint of AX and the midpoint of BY are also this 
point.  
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