Paradoxes

NG Yui-kin

2019.07.08\&10

GÖDEL, ESCHER, BACH: wimin an Eternal Golden Braid DOUGLAS R. HOFSTADTER

Douglas. R. Hofstadter, 1979

Paradox

A scenario that involves an argument that

- begins with premises that seem to be true
- proceeds with reasoning that seems to be valid
- arrives at a conclusion that is unacceptable (such as a falsehood, a contradiction, or an absurdity)

See, for example, Cook (2013)

Once upon a time ...

Paradoxes

Fallacies

Mistakes

Mistakes
$1+1=3$

Fallacies (sophisms)

2 = a number
 3 = a number
 Therefore, $2=3$

Paradox

$$
\frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}
$$

Paradox

$$
\begin{array}{ll}
\frac{x+5}{x-7}-5=\frac{4 x-40}{13-x} & \frac{-1}{x-7}=\frac{1}{13-x} \\
\frac{x+5-5(x-7)}{x-7}=\frac{4 x-40}{13-x} & 7-x=13-x \\
\frac{-(4 x-40)}{x-7}=\frac{4 x-40}{13-x} & 7=13
\end{array}
$$

Pinocchio paradox

Unspecified premises

Barber paradox

There is a village in which there is a barber named
"Bertrand". Bertrand shaves all the men in the village who do not shave themselves, And Bertrand shaves none of the men in the village who do shave themselves.

Question, does Bertrand shave Bertrand, or not?

Liar paradox

This sentence is false

Liar paradox

This sentence is false

Case 1 The sentence is true Case 2 The sentence is false

Liar paradox

This sentence is false

The sentence is neither true nor false

Liar paradox

This sentence is false

Case 1 The sentence is true Case 2 The sentence is false
Case 3 The sentence is neither true nor false

Strengthened Liar paradox

This sentence is not true

See, for example, Rieger (2001)

Liar paradox

This sentence is false

Self-reference should be prohibited

Liar paradox

This sentence is written in English.

Self-reference should be prohibited

RAYMOND M. SMULLYAN

Wriar

Multi-sentence Liar paradox

(A) : Sentence (B) is true
(B) : Sentence (A) is false

No Self-reference

Multi-sentence Liar paradox

(A) : Sentence (B) is true
(B) : Sentence (A) is false

Circularity should be prohibited

Yablo paradox

$\left(\mathrm{A}_{1}\right)$: For all $m>1,\left(\mathrm{~A}_{m}\right)$ is false $\left(\mathrm{A}_{2}\right)$: For all $m>2,\left(\mathrm{~A}_{m}\right)$ is false
$\left(\ddot{\mathrm{A}}_{n}\right)$: For all $m>n,\left(\mathrm{~A}_{m}\right)$ is false

No circularity

See, for example, Yablo (1985); Cook (2014)

Assume that there is a r such that $\left(A_{r}\right)$ is true
For all $m>r,\left(\mathrm{~A}_{m}\right)$ is false
$\left(\mathrm{A}_{r+1}\right)$ is false
For all $m>r+1,\left(\mathrm{~A}_{m}\right)$ is false
$\left(\mathrm{A}_{r+1}\right)$ is true
Contradiction! That implies that the assumption is false

For all $r,\left(\mathrm{~A}_{r}\right)$ is false
$\left(A_{1}\right)$ is false
For all $m>1,\left(\mathrm{~A}_{m}\right)$ is false
$\left(\mathrm{A}_{1}\right)$ is true
Contradiction!

＂Applications＂

金匣子
\square
銀匣子

＂Applications＂

這兩隻匣子上的話恰好 有一句稢真
銀匣子

"Applications"

Two yes-no questions

R.M.Smullyan

Surprises \& challenges:
 Motivation

Revisit the concepts and reasoning

Paradox

A common algebraic proof of
Suppose $x=1$

$$
\begin{aligned}
& x^{2}=x \\
& x^{2}-1=x-1 \\
& (x+1)(x-1)=x-1 \\
& (x+1)=1 \\
& 2=1
\end{aligned}
$$

Paradox

Another algebraic proof of $1=2$

$$
\begin{array}{lll}
16-36=25-45 & 4=5 \\
16-36+\frac{81}{4}=25-45+\frac{81}{4} & 0=1 \\
\left(4-\frac{9}{2}\right)^{2}=\left(5-\frac{9}{2}\right)^{2} & \therefore & 1=2 \\
4-\frac{9}{2}=5-\frac{9}{2} &
\end{array}
$$

Paradox

The 3rd algebraic proof of $1=2$

$$
\begin{array}{ll}
\frac{x+5}{x-7}-5=\frac{4 x-40}{13-x} & \frac{-1}{x-7}=\frac{1}{13-x} \\
\frac{x+5-5(x-7)}{x-7}=\frac{4 x-40}{13-x} & 7-x=13-x \\
\frac{-(4 x-40)}{x-7}=\frac{4 x-40}{13-x} & 0=13 \\
\frac{0}{x-7} & 1=1 \\
& 1=2
\end{array}
$$

A calculus proof of

$$
2+2=2^{2}
$$

$$
3+3+3=3^{2}
$$

$$
4+4+4+4=4^{2}
$$

$x+x+\ldots+x=x^{2}$, where x is a positive integer

$$
1+1+\ldots+1=2 x
$$

$$
x=2 x \quad \therefore \quad 1=2
$$

Paradox

Another calculus proof of

$$
\begin{aligned}
\int \frac{1}{x} d x & =x \cdot \frac{1}{x}-\int x d\left(\frac{1}{x}\right) \\
\int \frac{1}{x} d x & =1-\int x \cdot \frac{-1}{x^{2}} d x \\
\int \frac{1}{x} d x & =1+\int \frac{1}{x} d x \\
0 & =1 \\
\therefore \quad 1 & =2
\end{aligned}
$$

Paradox

Number of roots

The number of roots of a quadratic equation in one unknown is at most 2 ?

Paradox

Number of roots

The number of roots of a quadratic equation in one unknown is at most 2 ?
Suppose a, b, c are three different numbers. The following equation

$$
\frac{(x-a)(x-b)}{(c-a)(c-b)}+\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-a)(x-c)}{(b-a)(b-c)}=1
$$

has three different roots a, b, c.

Number of roots

Coefficient of $x^{2}=$
$\frac{1}{(c-a)(c-b)}+\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}=0$

Paradox

Number of roots

$$
\begin{aligned}
& \text { Coefficient of } x= \\
& \frac{-(a+b)}{(c-a)(c-b)}+\frac{-(b+c)}{(a-b)(a-c)}+\frac{-(c+a)}{(b-a)(b-c)} \\
= & \frac{(a+b)(a-b)+(b+c)(b-c)+(c+a)(c-a)}{(a-b)(b-c)(c-a)} \\
= & 0
\end{aligned}
$$

Paradox

Number of roots

The constant term $=$

$$
\begin{aligned}
& \frac{a b}{(c-a)(c-b)}+\frac{b c}{(a-b)(a-c)}+\frac{c a}{(b-a)(b-c)} \\
= & \frac{-a b(a-b)-b c(b-c)-a c(c-a)}{(a-b)(b-c)(c-a)} \\
= & 1
\end{aligned}
$$

Paradox

Number of roots

Hence, the equation is:

$$
0 x^{2}+0 x+1=1
$$

Paradox

Intersection of graphs

$$
\log _{\frac{1}{16}} x=\left(\frac{1}{16}\right)^{x}
$$

Paradox

Intersection of graphs

$$
\log _{\frac{1}{16}} x=\left(\frac{1}{16}\right)^{x}
$$

But there are at least two roots:

$$
\frac{1}{2}, \frac{1}{4}
$$

Paradox

$$
0.48<x<0.52
$$

Centre of gravity paradox

Dissecting a Circle

(Azad, 2013; 2015)

Unroll the Rings

https://www.geogebra.org/m/r5VBs842

Area $=(a)(8 a) / 2=4 a^{2}$

Area $=(a)(4 a+4 b) / 2=2 a(a+b)$

Area of a sphere

Area of a sphere

Area of a sphere

$2 \pi r$

Area of a sphere $=2 \times \frac{1}{2} \times \frac{2 \pi r}{n} \times \frac{2 \pi r}{4} n$

$=\pi^{2} r^{2}$

Sorites paradox (Paradox of heap)

Sorites paradox (Paradox of heap)

1 grain of wheat does not make a heap.
If n grains don't make a heap, then $n+1$ grains don't.

Therefore,
1 million grains don't make a heap.

Surprise examination paradox

A teacher tells her students that the examination will be held on one weekday in the following week but that the examination will be a surprise to the students.

Proof by Mathematical Induction

(A) For any positive real numbers x and any positive integer $n,(1+x)^{n} \geq 1+n x$

Proof by Mathematical Induction

(A) For any positive real numbers x and any positive integer $n,(1+x)^{n} \geq 1+n x$
Proof:
It is obviously true for $n=1$.
For any positive integer k, if $(1+x)^{k} \geq 1+k x$
$(1+x)^{k+1} \geq(1+x)(1+k x)$

$$
\begin{aligned}
& =1+(k+1) x+k x^{2} \\
& \geq 1+(k+1) x
\end{aligned}
$$

Proof by Mathematical Induction

(A) For any positive real numbers x and any positive integer $n,(1+x)^{n} \geq 1+n x$
(B) For any positive real numbers x and any positive integer $n,(1+x)^{n}>n x$
(A) is stronger than (B) as (B) can be deduced from (A). But can we prove (B) by MI?

Proof by Mathematical Induction

Proof:

It is obviously true for $n=1$.
For any positive integer k, if $(1+x)^{k}>k x$ $(1+x)^{k+1}>(1+x) k x$
$(1+x) k x>(k+1) x$
$\Leftrightarrow x(k+k x-k-1)>0$
$\Leftrightarrow k x>1 \quad$ Not necessarily true!

Proof by Mathematical Induction

$$
\begin{array}{ccc}
P_{A}(k) & \Rightarrow & P_{A}(k+1) \\
\Downarrow & & \Downarrow \\
P_{B}(k) & & \\
P_{B}(k+1)
\end{array}
$$

Unfair subway paradox

Unfair subway paradox

Two-evelopes paradox

One contains twice as much money as the other Switch or not?

Two-evelopes paradox

One contains twice as much money as the other Switch or not?
By symmetry, no need to switch!

Two-evelopes paradox

\$M

$\$ 2 M$ or $\$ \frac{M}{2}$

Two-evelopes paradox

\$M

$\$ 2 M$ or $\$ \frac{M}{2}$

The expected value of money in the other evelope
$=\$\left(2 M \times \frac{1}{2}+\frac{M}{2} \times \frac{1}{2}\right)$
$=\$ \frac{5 M}{4}>\$ M \quad$ Should switch!

Two-evelopes paradox

\$M

$\$ 2 M$ or $\$ \frac{M}{2}$

The expected value of money in the other evelope

$$
\begin{aligned}
& =\$\left(2 M \times \frac{1}{2}+\frac{M}{2} \times \frac{1}{2}\right) \\
& =\$ \frac{5 M}{4}>\$ M \quad 2 \text { Switch again! }
\end{aligned}
$$

Two-evelopes paradox

This paradox has been mentioned in a talk by the Fields medallist Martin Hairer at the Heidelberg Laureate Forum 2017.

Doomsday argument

How long will our human race survive?

Doomsday argument

How long will our human race survive?

Doomsday argument

A: 1-20 balls
B: $1-2000$ balls

Doomsday argument

A: $1-20$ balls
B: $1-2000$ balls

3 From A or from B ?

Doomsday argument

$$
A: 1-20 \text { balls } \quad B: \quad 1-2000 \text { balls }
$$

From A or from B ?

$$
\begin{aligned}
& P(B \mid 3) \\
& =\frac{P(3 \mid B) P(B)}{P(3 \mid B) P(B)+P(3 \mid A) P(A)} \\
& =\frac{\frac{1}{2000}}{\frac{1}{2000}+\frac{1}{20}} \\
& =\frac{1}{101}
\end{aligned}
$$

Hilbert's hotel paradox

Gödel incompleteness theorems

This sentence is not provable in the system S

... Mid-2020

