Developing programming concepts through Python

[image:]

Objective

This learning and teaching resource set aims to introduce the basic concepts of programming through Python and to give students a preliminary understanding of the use of Python programming language to enhance their logical thinking and problem-solving skills.

Content
Basic concepts 	3
What is “Python” 	3
Variables and Algebra 	8
Operators	12
List		16
If ... (conditional statement) 	20
... Else (conditional statement) 	23
Logical operation 	28
Addition / Subtraction 	30
For loop (loop) 	33
While loop (loop)	40
Modules 	43
Maximum value, Minimum value, Mean 	45
Searching 	50
Strings 	52
Counting the number of objects which match criteria in a list 	54
Sequence test 	55

[image:] A.	Basic concepts

0. What is “Python”

Python is a programing language that is easy to write and extend, powerful and cross-platform.

[image:]

Official website: https://www.python.org/

The characteristics of Python

1. Easy to learn:
The structure of Python is simple with clear syntax. It is easier for beginners to learn.

2. Easy to read:
The coding of Python is clear and simple.

3. Cross-platform:
Python is a cross-platform language. It is well compatible with UNIX, Windows and Mac.

4. GUI (Graphical User Interface) programing:
Python supports GUI programing which can create cross-platform GUI programs.

5. Embeddable:
Python can be embedded in C/C++ programs.

Installation of Python

	Python can be downloaded from the official website: https://www.python.org/downloads/. Installations for different operating systems are provided on the website.

[image:]

	Open the installation file after downloading.

[image:]
[image:]

	
 After installation, open IDLE.

[image:]

	Click “File”, then choose “New File”.

[image:]
[image:]

	After opening a new file, we can input some Python codes.

[image:]

	Click “Run” and choose “Run Module”.

[image:]

	Click “OK”, then save the file on the computer.

[image:]

	The program will run.

[image:]

1. 	Variables and Algebra

There are many similarities between Mathematics and computer programs. They are tools that can be used to analyze and understand the world. One similar feature between Mathematics and programming is Variable and Algebra.

[image:]

Variable refers to the storage space of computer memory. It is just like a box for data storage that can be named.

	Algebra in Mathematics:
Let x = 3
Let y = 2

In Mathematics, we represent algebras in this way.
x refers to 3
y refers to 2

	Variables in programming:
x = 3
y = 2

In programs, we represent variables in this way.
x refers to 3
y refers to 2

Addition

	Algebra in Mathematics
	Variables in programming

	Let x = 2
Let y = 2.1

Let answer = x + y
	x = 2
y = 2.1

answer = x + y

print(answer)

We can do calculation by using Mathematics. The above is an example of addition. Let x equals to 2 and let y equals to 2.1, then we can add x and y together. After the addition, we set the answer into variable “answer”. The answer would be shown by applying the code “print(answer)”.

Input data

	Code
	Output

	your_name = input("What is your name? ")
print(your_name)

	What is your name? Kitty
Kitty

	a_num = float(input("Input a number: ")) print(a_num - 7)

	Input a number: 8
1.0

The content of the variable is not necessarily defined in codes, it can be defined during the execution of the program.

The code “float()” changes the input data into floating point so that the input data can be used for Mathematical calculation.

Example 1
Calculate 6 + 3 and show the answer.
	Code
	Output

	a = 6
b = 3

ans = a+b print (ans)
	 9

Example 2
Calculate 6 – 3 and show the answer.
	Code
	Output

	a = 6
b = 3

ans = a - b print (ans)

	 3

Example 3
Use “print()” to show the words and the content of the variable together.
	Code
	Output

	a = 56

print("Some Text ", a)
	Some Text 56

Example 4
Calculate 8 – 4 and show the answer. The data needs to be input during working process of the program.
	Code
	Output

	a = float(input("a: "))
b = float(input("b: "))

ans = a - b
print ("a - b = ", ans)

	a: 8
b: 4
a - b = 4.0

Exercise 1
Calculate 8 + 4 – 2 and show the answer.
	Code
	Output

	a = 8
b = 4
c = 2

ans = a + b - c
print (ans)

	 10

Exercise 2
Calculate 8 + 4.1 – 2 and show the answer. The data needs to be input during working process of the program.
	Code
	Output

	a = float(input("a: "))
b = float(input("b: "))
c = float(input("c: "))

ans = a + b - c
print ("a + b - c = ", ans)
	 a: 8.5
 b: 4.1
 c: 2
 a + b - c = 10.6

2. 	Operators

		
	

	+
	Addition (plus)

	 -
	Subtraction (minus)

	*
	Multiplication (multiply)

	/
	Division (divide)

	
	

Apart from the above operators, there is a special operator:

	
% Modulo

The main purpose of using modulo is to find the remainder, for example:

In Mathematics:
9/4 = 2...1
represents “nine is divided by four equals to two and the remainder is one”.

The expression with modulo:
9%4 = 1

	Code
	Output

	a = 9
b = 4

ans = a%b print (ans)

	 1

Power

	
** Power

In Python, the use of power is common, “**” represents power.

	Code
	Output

	a = 9
b = 3

ans = a**b print (ans)

	729

Example 1
Calculate the mean of 3, 4 and 5.
	Code
	Output

	a = 3
b = 4
c = 5

ans = (a + b + c)/3
print (ans)

	4.0

Exercise 1
Calculate the mean of 2, 4, 6 and 8.
	Code
	Output

	a = 2
b = 4
c = 6
d = 8

ans = (a + b + c + d)/4
print (ans)
	5.0

Example 2
Calculate 3 to the power of 4.
	Code
	Output

	a = 3
b = 4

ans = a**b print (ans)
	81

Exercise 2
Calculate 2 to the power of 4.
	Code
	Output

	a = 2
b = 4

ans = a**b print (ans)
	16

Example 3
Given the formula: Volume of prism = Base area x Height, construct a program to calculate the volume of a 3 x 5 x 7 cuboid.
	Code
	Output

	a = 3
b = 5
c = 7

ans = a*b*c print (ans)
	105

Exercise 3
Given that volume of cylinders can be calculated with the formula:

Suppose pi = 3.14159265359, r = 3 and h = 6. Calculate the volume of the cylinder.
	Code
	Output

	pi = 3.14159265359
r = 3
h = 6

ans = pi*(r**2)*h print (ans)

	169.64600329386

Exercise 4
Construct a program to calculate the roots of quadratic equations. The data needs to be input during working process of the program.

	Code
	Output

	a = float(input("input a: "))
b = float(input("input b: "))
c = float(input("input c: "))

x1 = (- b+(b**2 - 4*a*c)**0.5)/(2*a)
x2 = (- b - (b**2 - 4*a*c)**0.5)/(2*a)

print("x1 = ",x1)
print("x2 = ",x2)

	input a: 1
input b: 3
input c: - 4
x1 = 1.0
x2 = - 4.0

3. 	List

When we need to define a large number of variables, we can use “list”. What if we need to define 20 variables, is it possible to input:
[image: cabinetç��å��ç��æ��å°�çµ�æ��]variable1 = 0
variable2 = 0
variable3 = 0
…
It is too complicated and inefficient.

Therefore, we use a more efficient way: List.

List is like a cabinet with drawers that can be removed/added easily, it stores variables together in a nearby place.

	
a_list = []

“a_list” is a name that is set by programmers. Its nature is similar to the name of variables. It can be “apple”, “abc”, and so on.

“= []” defines “a_list” as an empty list.

score_of_peter = [56, 98, 76]

Here, we define a list named “score_of_peter”. It is not an empty list anymore. In fact, it is a list with content. Assume that the scores of Peter's Chinese, English, and Math tests are stored in the list, with the values of 56, 98 and 76 respectively.

We can use “score_of_peter[0]” to obtain Peter’s Chinese score, “score_of_peter[1]” for English score and “score_of_peter[2]” for Math score.
[image: C:\Users\Leon\AppData\Local\Microsoft\Windows\INetCache\Content.Word\pyt1.png]

Example 1
Peter’s Chinese score, English score and Mathematics score are saved in the list, with the values of 56, 98 and 76 in [0], [1], [2] respectively.
	Code
	Output

	score_of_peter = [56, 98, 76]

print(score_of_peter[0])
print(score_of_peter[1])
print(score_of_peter[2])

	56
98
76

Example 2
First, we need to initialize the list. Therefore we set all elements inside the list to 0. Then, we put Kitty’s height(cm) two years ago, last year and this year into the list:
	The year before last year
	150

	Last year
	151

	This year
	152

	Code
	Output

	height_of_kitty = [0,0,0]

height_of_kitty[0] = 150
height_of_kitty[1] = 151
height_of_kitty[2] = 152
print(height_of_kitty[0])
print(height_of_kitty[1])
print(height_of_kitty[2])

	150
151
152

Exercise 1
Ben’s average monthly salary (HK$) two years ago, last year and this year are saved in the list.
	The year before last year
	18000

	Last year
	18500

	This year
	19000

	Code
	Output

	salary_of_ben = [18000, 18500, 19000]

print(salary_of_ben[0])
print(salary_of_ben[1])
print(salary_of_ben[2])

	18000
18500
19000

Exercise 2
Kitty’s average monthly expense(HK$) of two years ago, last year and this year are saved in the list.
	Two years ago
	10000

	Last year
	10500

	This year
	10000

	Code
	Output

	kitty_expense= [10000, 10500, 10000]

print(kitty_expense[0])
print(kitty_expense[1])
print(kitty_expense[2])

	10000
10500
10000

4. 	IF … (conditional statement)

In daily life, it is common for us to encounter conditional statements. For example:
“If it rains, we will open an umbrella.”

	If it rains, then

We will open an umbrella

	If rains:

Open an umbrella

Why does program need conditional statement(s)? It is because conditional statements help to make decisions based on different situations (conditions) automatically. Therefore, we need to quantify and compare different situations when writing programs. For example:If the score is below 60:

Fail

In this situation, the score is an index that needs to be measured. We want to compare this index with 60. Therefore, the logic becomes:If score < 60 :

Fail

Most programmers use comparison to design programs. The comparison symbols between programs and Mathematics are very similar. The following table shows the symbols that are commonly used in programs:
	
	Program
	Mathematics

	Larger than
	>
	>

	Smaller than
	<
	<

	Larger than or equal to
	>=
	≧

	Smaller than or equal to
	<=
	≦

	Equal to
	==
	=

	Not equal to
	!=
	≠

In programs, “==” represents the comparison between two variables to see whether they are equal or not.

Example 1
	Code
	Output

	math_score = 40
if math_score < 60:
print("Fail")

	Fail

Example 2
	Code
	Output

	math_score = 65
if math_score < 60:
print("Fail")

	

Exercise 1
By using two “if” conditional statements, construct a program to distinguish pass/fail.
	Code
	Output

	math_score = 65
if math_score < 60:
print("Fail")

if math_score >= 60:
print("Pass")

	Pass

5.
	Else (conditional statement)

When using conditional statements, condition(s) may not be satisfied. When a condition is not satisfied, we can add an “else” statement to execute another action.

For example, there are 2 restaurants near our school, one is Japanese restaurant and the other is a fast food restaurant. During lunchtime, we would like to go to the Japanese restaurant to have our meal. (If Japanese restaurant opens Then have meal there). Since we find that the Japanese restaurant is not open today, we will have our meal at the fast food restaurant instead. (Else have meal at fast food restaurant).

Below is a program written by a teacher to calculate whether a student has passed the test or not:
	if score <60:
Fail

	Code
chin_score = 40
if chin_score < 60:
print("Fail")

In the above example, we can use the program to distinguish whether a student has failed or not. However, the example will not show that the student has passed the exam. When the student has failed, Python will show “Fail” but Python will not show “Pass” when the student has passed the exam.

Apart from using two “if” conditional statements, we can use “else” conditional statement to make the program more comprehensive.
	if score < 60
Fail
else:
Pass

	Code
chin_score = 80
if chin_score < 60:
print("Fail")
else:
print("Pass")

Besides “else”, “elif” can also be used behind if-clause. If the condition is not satisfied, further analysis on the data will be carried out. “Elif” can be used with else in the if-clause. For example, a supermarket is offering a special sale: 20% off with purchases of $150 or above; 10% off with purchases of $100 or above and 5% off with purchases of $50 or above.

We can calculate the final amount by writing the following program.
	Code
	Output

	oprice = float(input("Please input the total price before discount: "))

if oprice >= 150:
price = oprice * 0.8
print(price)
elif oprice >= 100:
price = oprice * 0.9
print(price)
elif oprice >= 50:
price = oprice * 0.95
print(price)
else:
price = oprice
print(price)
	92.7

Example 1
Assume that “rain == 0” represents “It does not rain” and “rain == 1” represents “It rains”. Design a program to determine whether an umbrella should be brought or not.
	Code
	Output

	rain = 1
if rain == 1:
print("bring an umbrella")
else:
print("no need to bring an umbrella")

	bring an umbrella

Example 2
Assume that “temperature” represents the value of temperature (in Celsius). Design a program that will send an alarm when the temperature is over 32℃.
	Code
	Output

	temperature = 34
if temperature > 32:
print("Warning")
else:
print("Normal")

	Warning

Example 3
Assume that “temperature” represents the value of temperature (in Celsius). When the temperature is over 32℃, the program shows “Hot”. If the temperature is higher than 20℃ and lower or equals to 32℃, the program shows “Warm”.
	Code
	Output

	temperature > 32
	Hot

	20 < temperature ≤ 32
	Warm

	Code
	Output

	temperature = 21
if temperature > 32: print("Hot")
elif temperature > 20: print("Warm")

	Warm

Exercise 1
Assume that “temperature” represents the value of temperature (in Celsius). When temperature is under 13℃, the program will send an alarm.
	Code
	Output

	temperature = 5
if temperature < 13:
print("Warning")
else:
print("Normal")
	Warning

Exercise 2
Assume that “temperature” represents the value of temperature (in Celsius), the program will send a corresponding alarm based on its satisfying condition.
	Code
	Output

	temperature > 32
	Hot

	20 < temperature ≤ 32
	Warm

	temperature ≤ 20
	Cold

	Code
	Output

	temperature = 22
if temperature > 32:
print("Hot")
elif temperature > 20:
print("Warm")
else:
print("Cold")
	Warm

[image:]

6. 	Logical operation

	
	and
	(and/both)

	or
	or (either)

	not
	not (reverse)

	
	

When we are designing a program, we can see that there are logical relationships in different conditions. The most common relationships are “and”, “or”, “not”.

[image: Cooking, Smiley, Eat, Delicious, Tray, Deikat, Mutze]For example:

Mouth-watering (色香味俱全) means
delectable and fragrant and delicious

[image: pen pencil cartoonç��å��ç��æ��å°�çµ�æ��]

Pens or pencils are also acceptable

[image: failç��å��ç��æ��å°�çµ�æ��]

This student does not pass in the examination

And (and/both)

e.g. 色香味俱全 Mouth-watering means
delectable and fragrant and delicious.

Assume that variable “a” represents the appearance, variable “b” represents the smell and variable “c” represent the taste. Furthermore, “1” means good and “0” means bad.

Example 1
	if a == 1 and b == 1 and c == 1:
print("appetizing")
else:
print("not appetizing")

Or (either)

e.g. Pens or pencils are also acceptable.

Assume that variable “a” represents pens if “a” equals 0. Variable “a” represents pencils if “a” equals 1.

Example 2:
	if a == 0 or a == 1:
print("acceptable")
else:
print("not acceptable")

Not (reverse)

e.g. If the score is no more than or equal to 60, it means fail.

Example 3
	if not(chin_score >= 60):
print("Fail")
else:
print("Pass")

7. 	Cumulative Addition and Subtraction

Cumulative Addition
i = i + 1

Cumulative Addition is a method that increases the value of a variable cumulatively. It is very important in programming.

Example1
	Code
	Output

	i = 0
print(i)

i = i + 1
print(i)

i = i + 1
print(i)

i = i + 1
print(i)

	0
1
2
3

Example 2
	Code
	Output

	i = 0
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

	0
2
4
6

Cumulative Subtraction
i = i - 1

Cumulative Subtraction is a method that decreases the value of a variable cumulatively.

Example 3
	Code
	Output

	i = 0
print(i)

i = i - 1
print(i)

i = i - 1
print(i)

i = i - 1
print(i)

	0
- 1
- 2
- 3

Example 4
	Code
	Output

	i = 0
print(i)

i = i - 3
print(i)

i = i - 3
print(i)

i = i - 3
print(i)

	0
- 3
- 6
- 9

Exercise 1
Construct a program that shows the odd numbers from 1 to 9.
	Code
	Output

	i = 1
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

	1
3
5
7
9

Exercise 2
Construct a program that shows the even numbers from 2 to 10.
	Code
	Output

	i = 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

i = i + 2
print(i)

	2
4
6
8
10

8.
	For loop (Looping)

[image:]
The concept of loop is similar to athletes who run around the cycle repeatedly.

[image:]
[image:]

The above picture shows the value of variable “i” in the upper left corner which represents the number of turns an athlete has finished.

[image:]

Since “i” represents the number of turns that an athlete has finished, “i” will increase by 1 after the athlete has finished one turn.

Example 1
	Code
	Output

	for i in range(0,5): print(i)
	0
1
2
3
4

From the above, we can see that “i” increases accumulatively.

Example 2
	Code
	Output

	for i in range(2,7): print(i)
	2
3
4
5
6

[image:]

We can use “for loop” if we want the program to show “hello” for two times. “0” represents that “i” starts to accumulate from 0. “2” represents that the loop will run continuously if i < 2.

Example 3
	Code
	Output

	 for i in range(3,5):
print(i)
print("hello")
	3
hello
4
hello

Example 4
Apart from ascending order, descending order is also supported by “for loop” function. In range (4, 0, -1), -1 means minus 1 each time.
	Code
	Output

	 for i in range(4,0, -1):
print(i)
print("hello")
	4
hello
3
hello
2
hello
1
hello

Example 5
By using “for loop”, solve the problem related to sum of geometric sequence.
	Code
	Output

	a = 6
nth_term = a
sum_to_nth = nth_term
r = 3
n = 4

for i in range(1,n+1):
nth_term = nth_term*r
sum_to_nth = nth_term + sum_to_nth

print("Answer 1 (for loop): ", sum_to_nth)
print("Answer 2 (formula): ", a*(1 - r**(n+1))/(1 - r))

	Answer 1 (for loop): 726
Answer 2 (formula): 726.0

[image:]

Break

When using “loop”, we can use “break” to stop the loop if it matches the criteria, in order to reduce the running time.

Below is an example of a program designed by a tutor to find out whether the students have obtained grade A (80 marks) or not.

Before:
	Code
	Output

	ict_score = [75,75,78,80,85,60,70,88]
for i in range (0,8):
if ict_score[i]>=80:
 print ("At least one student obtain A grade in class!")

	At least one student obtain A grade in class!
At least one student obtain A grade in class!
At least one student obtain A grade in class!

After:
	Code
	Output

	ict_score = [75,75,78,80,85,60,70,88]
for i in range (0,8):
if ict_score[i]>=80:
print ("At least one student obtain A grade in class!")
break

	At least one student obtain A grade in class!

9.
	While loop (Looping)
[image:]
The use of the While loop is to continue executing an instruction when certain conditions are still true. For example, we want to run 1 km on a 100m running track, we need to run 10 times.

	While Times of Running <= 10
 Still run

In addition, “while loop” can make a program run repeatedly until the condition is not true.

Example 1
	Code
	Output

	i=0
while(i<2):
 print("hello")
 i = i + 1

	hello
hello

The uses of “while loop” and “for loop” are different. Programmers commonly use “for loop” when the program is designed to repeat for a fixed number of times. On the other hand, “while loop” is used when the program is not designed to repeat for a fixed number of times.

Example 2
	Code
	Output

	i=0
while(i<20):
 print("hello ",i)
 i = i + 5

	hello 0
hello 5
hello 10
hello 15

Exercise 1
By using “while loop", construct a program with the output below:
	hello 20
hello 15
hello 10
hello 5

	Code:
i=20
while(i>0):
 print("hello ",i)
 i = i - 5

Exercise 2
By using “while loop”, construct a program with the output below:
	hello 10
hello 8
hello 6
hello 4
hello 2

	Code:
i=10
while(i>0):
 print("hello ",i)
 i = i - 2

Exercise 3
By using “for loop”, reconstruct the program in Exercise 2.
	for i in range(10,0, - 2):
 print("hello ",i)

Post-test Loop

Unlike other languages, Python does not have “Do...While Loop”. However, we can use “while”, “if” and “break” to simulate the “Post-test Loop”.

For example, when using Python to count from 1 to 10, we can use the code shown as follows:
	Code
	Output

	num = 1
while True:
 print(num)
 num = num + 1
 if(num > 10):
 break
	1
2
3
4
5
6
7
8
9
10

When using “while True” statements, we need to add “break” at the end to avoid an infinite loop.

“Post- test Loop” can stop the program if certain conditions are met.

For example, an air-conditioner is targeted to work at certain temperature, like 25.5℃, programmers can set up a controller with “Post-test Loop” program to control the cooling capacity.

First, programmers design a program to keep the compressor and fan on. Once the temperature falls below 25.5℃, a request will be sent to stop the compressor. At the end, only the fan of the air-conditioner will be turned on.

10.
	Modules

When we solve complicated problems using Python, we can use “Modules” to divide the problem into parts and introduce programs written by ourselves or others to solve the problem.

For example, when we have Mathematical problem, we may discuss with our Mathematics teacher; when we have question in History, we may discuss with our History teacher.

By using “Modules”, we can divide the process of programming into subparts. We may even make use of the open source of the programs completed in the past.

Python provides different ways to implement modular concepts, including functions, modules, and so on.

Function
Function is a formula defined by programmers, the following is an example of calling a function with Python:
	Code
	Output

	def one_plus_one ():
return 1+1
ans = one_plus_one ()
print (ans)

	2

The above shows the way to define and call a “one_plus_one” function.

Modules

A module is a set of code which contains different functions generally.

In Python, we use “import” to import an entire module and “from … import” to import certain functions.

Using “import” to import an entire module:
	Code
	Output

	
	cal.py

	def one_plus_one ():
return 1+1

	ans.py

	import cal
ans = cal.one_plus_one ()
print (ans)

	
	cal.py

	None

	ans.py

	2

Using “from ... import” to import certain functions:
	Code
	Output

	
	cal.py

	def one_plus_one():
return 1+1
def two_plus_two():
return 2+2

	ans.py

	from cal import two_plus_two
ans = two_plus_two()
print (ans)

	
	cal.py

	None

	ans.py

	4

[image:] B.	Maximum, Minimum, Mean (Average)

Maximum
	Code
	Output

	a_list = [8, 2, 0, -5, 9]
ans = max(a_list)
print(ans)
	9

Python provides a built-in function to find the maximum value in a list.

Minimum
	Code
	Output

	a_list = [8, 2, 0, -5, 9]
ans = min(a_list)
print(ans)
	 -5

Python also provides a built-in function to find the minimum value in a list.

Mean (Average)
	Code
	Output

	a_list = [8, 2, 0, - 5, 9]
ans = sum(a_list)/len(a_list)
print(ans)
	2.8

“Sum” is a built-in function in Python. It can find out the sum of a list. “Len” is another built-in function in Python. It can find out the numbers of value in a list.

If we do not want to use the built-in function, we can use “loop” and logical operations to find out the maximum, minimum and mean.
Exercise 1
By using “loop” and logical operation, construct a program to find the maximum value.
	Code
	Output

	a_list = [8, 2, 0, - 5, 9, 1]

max_num = a_list[0]
for i in range(1,len(a_list)):
 if a_list[i] > max_num:
 max_num = a_list[i]

print(max_num)

	9

 [image:]

Exercise 2
By using “loop” and logical operation, construct a program to find the minimum value.
	Code
	Output

	a_list = [8, 2, 0, -5, 9]

min_num = a_list[0]
for i in range(1,len(a_list)):
 if a_list[i] < min_num:
 min_num = a_list[i]

print(min_num)

	 -5

[image:]

Exercise 3
By using “loop” and logical operation, construct a program to find the mean.
	Code
	Output

	a_list = [8, 2, 0, - 5, 9]

sum_num = 0
for i in range(0,len(a_list)):
 sum_num = sum_num + a_list[i]

print(sum_num / len(a_list))

	2.8

[image:]

Exercise 4
By using “one loop” and logical operation, construct a program to find out the maximum and minimum at the same time.
	Code
	Output

	a_list = [8, 2, 0, -5, 9]

max_num = a_list[0]
min_num = a_list[0]

for i in range(1,len(a_list)):
 if a_list[i] < min_num:
 min_num = a_list[i]
 if a_list[i] > max_num:
 max_num = a_list[i]

print("Min: ", min_num)
print("Max: ", max_num)

	Min: -5
Max: 9

[image:]

[image:] C. 	Searching

Example 1
We can find a certain value in a list by “searching” function.
	Code
	Output

	a_list = [8, 2, 0, - 5, 9]

search_num = 9
found = 0

for i in range(0,len(a_list)):
 if a_list[i] == search_num:
 found = 1

if found:
 print(search_num," is in the list.")
else:
 print(search_num," is not in the list.")
	9 is in the list.

“search_num” is the value that we need.
If the number of “found” is “0”, it means the number is not in the list.
If the number of “found” is “1”, it means the number is in the list.

Exercise 1
Construct a program to search for two certain values in a list.
	Code
	Output

	a_list = [8, 2, 0, - 5, 9]

search_num1 = 0
search_num2 = 88

found1 = 0
found2 = 0

for i in range(0,len(a_list)):
 if a_list[i] == search_num1:
 found1 = 1
 if a_list[i] == search_num2:
 found2 = 1

if found1:
 print(search_num1," is in the list.")
else:
 print(search_num1," is not in the list.")

if found2:
 print(search_num2," is in the list.")
else:
 print(search_num2," is not in the list.")

	0 is in the list.
88 is not in the list.

[image:] D. 	String

“String” is a sequence combined by zero or multiple character(s).

Character: 2, T, o, 3
String: "apple", "hello", "hello world"

Character can be a symbol, letter or other single unit. Characters can form a string.

Number of words
	Code
	Output

	a_string = "hello world" len_of_str = len(a_string) print(len_of_str)

	11

Characters in " " are defined as a string. “Len” is used to find the number of characters in a string.

Example 1
Using “print()” to show variables and characters simultaneously.
	Code
	Output

	a = 56

print("Some Text ", a)

	Some Text 56

	a = 56
b = "Some Text "
c = b+str(a)

print(c)

	Some Text 56

str() can convert a number to a string so that we can combine the variable and string.

Example 2
Extraction of a string:
	Code
	Output

	a_string = "hello world"
b_string = a_string[0:5]
c_string = a_string[6:11]

print(a_string)
print(b_string)
print(c_string)

	hello world
hello
world

[a:b] is the extraction of a string in Python, [0:5] represents that the string is extracted from the first character to the fifth character.

Exercise 1
Extract “Py” from “Python”, then store it into the variable “a”.
	Code
	Output

	a_string = "Python"
a = a_string[0:2]

print(a)

	Py

Exercise 2
Extract “thon” from “Python” then store it into variable “a”.
	Code
	Output

	a_string = "Python"
a = a_string[2:6]

print(a)

	thon

[bookmark: _GoBack]
[image:] E.	Counting the number of objects which meet the criteria in a list

Example 1
	Code
	Output

	a_list = [8,7,2,9,4,8]

counter = 0

for i in range(0,len(a_list)):
 if a_list[i] > 2:
 counter = counter + 1

print(counter)

	5

The above program can be used to find the number of elements (numbers) that are larger than 2 in the list.

Exercise 1
Design a program to count the number of elements (numbers) which are equal to 5 in the list
	Code
	Output

	a_list = [8,5,2,9,4,5]

counter = 0

for i in range(0,len(a_list)):
 if a_list[i] == 5:
 counter = counter + 1

print(counter)

	2

[image:] F. 	Sequence Test

Example 1
	Code
	Output

	a_list = [1,2,4,4,6,6,7,7]
is_sorted = True

for i in range(1,len(a_list)):
 if a_list[i] < a_list[i - 1]:
 is_sorted = False

print(is_sorted)

	 True

	Code
	Output

	a_list = [8,2,4,4,6,6,7,7]

is_sorted = True

for i in range(1,len(a_list)):
 if a_list[i] < a_list[i - 1]:
 is_sorted = False

print(is_sorted)

	 False

“True and False” is a Boolean, it represents whether the logic is correct or not. For example:
1==1 is True(Correct)
1>2 is False (Not correct)

“is_sorted” stores the logical result of the variable in the program.

Firstly, the program will assume that “a_list” is in ascending order, then it constructs a loop to test. Once it discovers that the order is not in ascending order, the loop will break immediately. If the loop does not find any disorder, the assumption will be valid.

[image:]

Exercise 1
Design a sequence test program to test whether the list is in descending order.
	Code
	Output

	a_list = [6,5,4,2,2,1]
is_sorted = True

for i in range(1,len(a_list)):
 if a_list[i] > a_list[i - 1]:
 is_sorted = False

print(is_sorted)
	 True

	Code
	Output

	a_list = [6,5,4,9,2,1]
is_sorted = True

for i in range(1,len(a_list)):
 if a_list[i] > a_list[i - 1]:
 is_sorted = False

print(is_sorted)
	 False

Exercise 2
By using “one loop”, design a sequence test program to test whether the list is in ascending or descending order.
	Code
	Output

	a_list = [4,3,2,1]

is_sorted_asc = True
is_sorted_desc = True

for i in range(1,len(a_list)):
 if a_list[i] > a_list[i - 1]:
 is_sorted_desc = False

 if a_list[i] < a_list[i - 1]:
 is_sorted_asc = False

print("Asc: ",is_sorted_asc)
print("Desc: ",is_sorted_desc)
	 Asc: False
 Desc: True

Developing programming concepts through Python	Page 1
image4.jpg

image5.jpg

image6.jpg

image7.jpg

image8.jpg

image9.jpg

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.jpg

image19.png

image20.png

image21.jpeg

image22.jpg

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.jpg

image30.png

image31.png

image32.png

image33.png

image2.jpg

image3.png

D

eveloping programming concepts

through Python

Page

1

D

eveloping programming concepts

through Python

Objective

This learning and teaching resource set

aims

to introduce the basic concept

s

of programming through

Python

and to give students a preliminary understanding of the use of Python programming language to

enhance their logical thinking and problem

-

solving skills.

Developing programming concepts through Python Page 1

Developing programming concepts through Python

Objective

This learning and teaching resource set aims to introduce the basic concepts of programming through

Python and to give students a preliminary understanding of the use of Python programming language to

enhance their logical thinking and problem-solving skills.

