
TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 1

R
elev

an
t K

n
o
w

led
g

e

Robot Fundamentals and Control

I What Is a Robot?

When we mention robots, human-like

robots with arms and legs come into the minds

of many people. However, this kind of robots

mostly appears in science fiction films, places

of entertainment, exhibitions and toy stores only.

They are very different from their industrial

counterparts.

Industrial robots are sometimes referred to as

robot arms. They can carry out simple

actions such as picking up putting down or

putting a workpiece into a machine taking a

workpiece out of a machine. They can also

carry out more complex tasks, including

searching, transporting, grabbing, aligning,

assembling and testing.

 (a) A human-like robot (b) A robot arm

In 1979, Robot Institute of America

defined a robot as ‘a re-programmable

multi-functional manipulator designed to move

materials, parts, tools, or specialised devices

through variable programmed motions for the

performance of a variety of tasks’. Anything

that fulfils the definition can be referred to as a

robot, even if it lacks a human shape.

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 2

R
elev

an
t K

n
o
w

led
g

e

An industrial robot is generally equivalent

to a robot arm, which consists of several

links connected in series by linear, rotary or

prismatic joints. At one end, the robot is

fixed to a supporting base, and at the other

end, it is equipped with a tool and is

controlled to perform tasks.

 However, robots nowadays have

become increasingly popular for

entertainment purposes, and also for use in

innovative technologies. Examples

include humanoids and military

applications.

 Different types of robots

Therefore, a robot can also be defined as

‘an intelligent and programmable man-made

semi- or fully independent (self-controlled)

object or set of cooperating objects (with a

common objective)’.

Supporting

base

Tool

Linkage joint

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 3

R
elev

an
t K

n
o
w

led
g

e

Exercise:

Which of the following can be regarded as a robot? Explain your answers.

a. b.

c. d.

Answers at the bottom of this page

(a) Not robots. They are just machines that can

walk mechanically.

(b), (c) and (d) They are robots because all of them

are programmable, have end

effectors for executing control

programs and have ways to move.

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 4

R
elev

an
t K

n
o
w

led
g

e

II Robot Design

The design of a robot in industry is

usually made up of six basic constituent

elements: a dynamic system (the mechanical

structure), end effectors, a computerised digital

controller, a drive system, a feedback system

and sensors. The interrelationships between

the six elements are shown in the following

figure.

The six basic elements of robots

Controller

A robot arm

Work

objectives

Feedback

Linkages
(equivalent to human

arms)

End effector
(equivalent to a
human palm)

Joints
(equivalent to human joints)

Rotation base
(equivalent to a human
body)

Program

Computerised
digital controller

Dynamic
system

End
effectors

Servo drive
system

Feedback system

Work
objectives

Sensors

Program

Sensors

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 5

R
elev

an
t K

n
o
w

led
g

e

a. Structures of Robot Arms

 Since 1980s, there has been a rapid growth

in the application of robot arms in industry,

particularly in the manufacturing and welding

processes of cars. Identifying the different

types of mechanical robot structures is an

effective and easy way for classifying robots

which is also a starting point for learning

robotics.

i. Cartesian Coordinate Robots

A Cartesian coordinate robot is formed by

3 prismatic joints, where the axes coincide with

the X, Y and Z planes. Cartesian coordinate

robots with the horizontal member supported at

both ends are sometimes called Gantry robots.

They are usually quite large in size. Cartesian

coordinate robots have three perpendicular

translational slides that move along the x-, y-

and z-axes, and thus they are also called xyz

robots or linear robots. They have a

rectangular work volume.

ii. Cylindrical Robots

A cylindrical robot rotates about its

central axis, forming a cylindrical work space.

It has two linear axes and one rotary axis at its

base. The arm of it can reach the surrounding

positions by rotating about and moving up and

down along the vertical member of the robot.

The arm of it can also extend or contract.

The work capcity of cylindrical robots is

cylindrical.

 Schematic diagram of a cylindrical robot

A typical cylindrical robot

A typical Cartesian coordinate robot

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 6

R
elev

an
t K

n
o
w

led
g

e

iii. Spherical / Polar Coordinate Robots

A polar robot has one linear axis and two

rotary axes. It is able to rotate in two different

directions about its central axis, with the third

joint moves in translation, thus forming a

hemisphere or a polar coordinate system.

A typical polar coordinate robot Schematic diagram of a polar coordinate robot

iv. SCARA Robots

SCARA (Selective Compliance Assembly Robot

Arm) is a robot design developed in the late 1970s in

Japan. It is a type of articulated robot. Its shoulder

and elbow joints rotate about vertical axes and there is a

prismatic joint at the shoulder for elevation.

The basic configuration of a SCARA is a robot

with multiple degrees of freedom and has the capability

of horizontal positioning, similar to a shoulder and

elbow held perfectly parallel to the ground. A typical SCARA robot

Work space of a polar coordinate robot

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 7

R
elev

an
t K

n
o
w

led
g

e

A delta type parallel robot

v. Parallel Robots

A parallel robot is made up of three parallelograms with four

degrees of freedom: three components of translations and one angle of

rotation. These parallelograms ensure the consistent orientation of

one end of a link with respect to those of the others. The rotational

axis is only affecting the end effector. As the arms are parallel to each

other, the weight of a load can be evenly distributed over all three links.

Schematic diagram and work space of a parallel robot

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 8

R
elev

an
t K

n
o
w

led
g

e

Schematic diagram of an articulated robot

vi. Articulated / Rotary Robots

Articulated or joint-arm robots are the most

versatile robots available. An articulated robot is a

mechanical manipulator that closely resembles the

natural form of a human arm with at least three rotary

joints.

One of the linkages of an articulated robot is

connected to the base (A1) and can rotate around it.

Other linkages are connected to joints A2 and A3.

Compared with a human arm, the above three parts are

the shoulder, bicep and forearm respectively.

For a six-axis jointed-arm robot, there are three

more axes, A4, A5 and A6, connected to the wrist,

which are responsible for the pitch, roll and yaw

motions respectively. With these extra axes added,

this kind of robot can move the end effector to any

point at any orientation within the work space.

Schematic diagram of an articulated robot

滾動

Yaw

Pitch

Roll

A typical articulated robot for handling materials

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 9

R
elev

an
t K

n
o
w

led
g

e

b. End Effectors

The arms of robots can be installed with

tools such as clamps, welding guns,

electromagnets, suction pads, spray guns and

grippers for performing a variety of specific

jobs. Clamps are a kind of commonly used

multi-functional robot arm tool. There are

different designs of clamps. They can be used

to tightly grip, hold and transfer workpieces or

tools, or point them in suitable directions. For

instance, a clamp with three axes can perform

complex actions including tilting forwards or

backwards, swirling, and swinging sideways.

Robots using different clamps

End effectors commonly used in production lines:

Vacuum gripper Magnetic gripper Finger type mechanical

gripper

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 10

R
elev

an
t K

n
o
w

led
g

e

c. Computerised Digital Controllers

The computerised control systems of

robots control the operation of each part of the

robots. A variety of programs can be input

and stored in the systems where interactions

between work, priorities of work and work

sequences are determined. In a production

system, the computer of the robot may also

need to control or communicate with other

machines such as conveyor belts and processing

machines. Different robot computers may use

different programming languages, for example,

VAL and RAPID.

Most robots also use a piece of apparatus

that is connected to the controller called trainer.

A trainer can be used to control a series of

motions of a robot, for instance, to direct the

welding gun on the robot arm to point at each

welding tip. The robot will at the same time

record the information and store it in the

computer so that in the real operation, the robot

can reuse the data. This method can save time

in programming.

Actuators are used to control the

operations of the axes and maintain the

directions of movements. As the robot needs

to withstand the weights of various components,

it will involve more changes in its motion. As

a result, the motion performance of actuators is

very important. Commands about the

directions of movements are constantly sent

from the robot computer and feedbacks are

checked at the same time to ensure the parts

moving along the correct paths. This process

requires a high-speed computer to send out the

commands and read the motion status of the

machine at a reasonable speed.

d. Measures of Feedback Systems

The feedback device of a robot measures the position, moving velocity and acceleration of each

axis. The position of each of the axes can be determined in either of the following ways with the

data from the feedback system.

(i) Absolute ‒ Set any point as the origin (0 , 0 , 0) and compare the current position with it.

(ii) Relative ‒ Compare the current position with the previous position.

The main axis can set any point as the origin and take it as the reference point to perform a

linear movement. However, absolute measurement values are usually used for the clamps as the

systems must obtain the actual positions of the clamps when robots begin to operate.

e. Sensors

Robots use sensors to identify and evaluate changes in position during various interactive

actions, differences in patterns, obstacles or failure of external systems. The following table lists

some commonly used sensors.

Sense Sensors Things that can be detected

Hearing Microphones Sound

Vision Light dependent resistors Light

Touch
Thermometers and

contact tips

Heat, weights, pressure, shapes,

dimensions, positions

Smell Smoke or smell detectors Smell, smoke

Some commonly used sensors

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 11

R
elev

an
t K

n
o
w

led
g

e

III Operations of Industrial Robots
The operations of industrial robots usually

have a large degree of flexibility, so that they

can be more easily adapted to handle the

demands of different tasks. Industrial robots

are controlled by computer programs. Similar

to numerical control machines, the operations

of robots can be changed by simply modifying

the computer programs. Both the computers

of robots and numerical control machines need

a large capacity of memory, sub-programs that

can be executed repeatedly, devices for editing

the programs, input and output devices for

auxiliary functions, and high-speed computing

capability.

i. Modes of Operation

Computers of robots need to be able to

carry out some special functions such as using

trainers for setting up programs, maintaining

linear motions of clamps when the robot arms

are swinging, and automatically compensating

the force when holding heavy objects.

Maintaining the linear motions of clamps

The modes of operation of robots can be divided into two main types:

(a) Point to point ‒ Robots move between various

individual and specific positions according to

the instructions of the program.

(b) Continuous path ‒ Robots follow the path

specified by the program completely.

Vertical

motion

Horizontal motion

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 12

R
elev

an
t K

n
o
w

led
g

e

ii. Sources of Power

There are 3 common types of drive

systems: electrical, hydraulic and pneumatic.

Electrical systems use electricity to

provide power and use motors to drive robots.

Advantages of electrical systems are that they

are simple, clean and quiet. However, they

cannot provide sufficient power to lift or move

heavy objects and are thus mostly used in

medium-sized or small robots.

Hydraulic systems use pumps to produce

pressurised oil to provide power. A large

driving force can be generated in a short period

of time. Hydraulic systems can control the

movements of robots precisely. However,

these systems are more expensive and their

structures are more complex.

Pneumatic systems have similar

advantages as those of hydraulic systems.

Pneumatic systems can produce more rapid

movements but with smaller power. Most

automated factories are already equipped with

pneumatic facilities. Thus, applying

pneumatic systems to drive robots can save

costs. However, since air is easier to be

compressed, the preciseness of the control of

robot positions and movements is lower. As a

result, robots using pneumatic systems usually

require auxiliary components or special designs

to assist the positioning.

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 13

R
elev

an
t K

n
o
w

led
g

e

IV Robots Controlled by Arduino
There are lots of ways to design and control robots. Here, we will use Arduino as the

controller, and the small experimental car shown in the figure below will be used as the basis of

each of the following experiments. The arrangement of the pins is listed in the following table.

 A small experimental car operated by an Arduino control board

Infrared

sensing

Ultrasonic

sensing

Servo motor

(under the

control board)

Motor

(under the

control board)

Arduino

control board

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 14

R
elev

an
t K

n
o
w

led
g

e

Pin arrangement

a. Left and Right Wheels under the Car

To make the small car (robot) move, both the hardware and the software need to be set up properly.

i. Hardware settings:

 Connect pins (9,6) to the motor of the left wheel and pins (10,11) to the motor of the right

wheel.

ii. Software settings:

First set pins (9,6) and pins (10,11) as Output.

void setup()

{

 pinMode(Left_Motor_P, OUTPUT); // PIN 6 (PWM)

 pinMode(Left_Motor_N, OUTPUT); // PIN 9 (PWM)

 pinMode(Right_Motor_P, OUTPUT); // PIN 10 (PWM)

 pinMode(Right_Motor_N, OUTPUT); // PIN11 (PWM)

}

Arduino pin Input / Output Function

3 Digital input Left IR sensor

5 Digital Output Servo Signal

6 PWM Output Left Motor

Control
7 Digital input Right IR sensor

9 PWM Output Left Motor

Control
10 PWM Output Right Motor

Control
11 PWM Output Right Motor

Control
A1 Digital Output Ultrasound

Trigger
A0 Digital input Ultrasound Echo

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 15

R
elev

an
t K

n
o
w

led
g

e

Then design the control of the rotation of the two motors.

Set the output requirements of the pins for the forward rotation and backward rotation of the motors.

Motor control signal P N

Left/Right Motor (Forward) High Low

Left/Right Motor (Backward) Low High

Motor Stop Low Low

Speed control (rapid forward for 2 seconds, slow forward for 2 seconds):

loop()

{

 digitalWrite(Left_Motor_P, HIGH); // Forward setup

 digitalWrite(Left_Motor_N, LOW);

 analogWrite(Left_Motor_P, SpeedValue);

 analogWrite(Left_Motor_N,0);

 digitalWrite(Right_Motor_P, HIGH); //Forward setup

 digitalWrite(Right_Motor_N, LOW);

 analogWrite(Right_Motor_P,SpeedValue);

 analogWrite(Right_Motor_N,0);

}

A function for stopping is also required:

Stop_function()

 {

 digitalWrite(Left_Motor_P, LOW);

 digitalWrite(Left_Motor_N, LOW);

 digitalWrite(Right_Motor_P, LOW);

 digitalWrite(Right_Motor_N, LOW);

 }

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 16

R
elev

an
t K

n
o
w

led
g

e

b. Adding Infrared (IR) Sensing

After setting the rotation of the motors, we only have to add infrared sensors at the bottom of

the car and then the car will be able to move along a black line drawn on the floor.

Using the feedback from the infrared sensors to determine the rotation of the motors

We will use the function digitalRead to read the signals from the IR sensors.

const int SensorLeft = 3; //Left IR sensor PIN

const int SensorRight = 7; //Right IR sensor PIN

int SL; //Status of Left IR Sensor

int SR; //Status of Right IR Sensor

void setup()

{

 pinMode(SensorRight, INPUT); //Define Right IR Sensor

 pinMode(SensorLeft, INPUT); //Define Left IR Sensor

 Serial.begin(9600); //Set Serial baud rate 9600bps

}

void loop()

{

 SL = digitalRead(SensorLeft);

 SR = digitalRead(SensorRight);

 delay(1000);

}

Both sensors
‘see’ black

Only right wheel
spins forward

Only left wheel
spins forward

Both wheels spin

forward at same speed

Right sensor
‘sees’ black

Left sensor
‘sees’ black

Robot turns

left

Robot goes

straight

Robot turns

right

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 17

R
elev

an
t K

n
o
w

led
g

e

Same as designing the rotation of the motors at the bottom of the car before, both the hardware

and the software of the sensors need to be set up properly.

i. Two sets of hardware settings:

Connect pins (9,6) to the motor of the left wheel and pins (10,11) to the motor of the right

wheel.

Connect pin 3 to the left sensor and pin 7 to the right sensor.

ii. Software settings:

First set pins (9,6) and pins (10,11) as Output, and pins 3 and 7 as Input.

void setup()

{

pinMode(Left_Motor_P, OUTPUT); // PIN 6 (PWM)

pinMode(Left_Motor_N, OUTPUT); // PIN 9 (PWM)

pinMode(Right_Motor_P, OUTPUT); // PIN 10 (PWM)

pinMode(Right_Motor_N, OUTPUT); // PIN11 (PWM)

pinMode(SensorRight, INPUT); //Define Right IR Sensor

pinMode(SensorLeft, INPUT); //Define Left IR Sensor

}

Then make settings to detect the black line, and control the left and the right wheels to respond

correspondingly.

(a) Move forward

if (SL == LOW & SR==LOW) //no black, both led on, move forward

 {

 digitalWrite(Left_Motor_P,HIGH); // set Left motor (Forward)

 digitalWrite(Left_Motor_N,LOW);

 analogWrite(Left_Motor_P,LowSpeed-5); //adjust speed by using PWM

 analogWrite(Left_Motor_N,0);

 digitalWrite(Right_Motor_P,HIGH); // set Left motor (Forward)

 digitalWrite(Right_Motor_N,LOW);

 analogWrite(Right_Motor_P,LowSpeed-5);

 analogWrite(Right_Motor_N,0);

 }

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 18

R
elev

an
t K

n
o
w

led
g

e

(b) Turn left

if (SL == HIGH & SR == LOW) // right on, turn left

{

 digitalWrite(Right_Motor_P,HIGH);

 digitalWrite(Right_Motor_N,LOW);

 analogWrite(Right_Motor_P,LowSpeed+5);

 analogWrite(Right_Motor_N,0);

 digitalWrite(Left_Motor_P,LOW);

 digitalWrite(Left_Motor_N,LOW);

 }

(c) Turn right

if (SR == HIGH & SL == LOW) // left led on, turn right

{

 digitalWrite(Right_Motor_P,LOW);

 digitalWrite(Right_Motor_N,LOW);

 digitalWrite(Left_Motor_P,HIGH);

 digitalWrite(Left_Motor_N,LOW);

 analogWrite(Left_Motor_P,LowSpeed+5);

 analogWrite(Left_Motor_N,0);

 }

(d) Stop

if (SR == HIGH & SL == HIGH) // stop

 {

 digitalWrite(Left_Motor_P,LOW);

 digitalWrite(Left_Motor_N,LOW);

 digitalWrite(Right_Motor_P,LOW);

 digitalWrite(Right_Motor_N,LOW);

 }

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 19

R
elev

an
t K

n
o
w

led
g

e

c. Adding Ultrasonic Sensing

Moving along a black line on the floor actualises automatic moving initially. Through adding

ultrasonic sensing to enable the robot to avoid obstacles, automatic moving is further enhanced.

Same as before, both the hardware and the software of the sensor need to be set up properly.

i. Hardware settings:

Connect pins (9,6) to the Output control of the left wheel motor and pins (10,11) to the Output

control of the right wheel motor.

Connect pin 5 to the Output control of the servo motor.

Connect pin A0 to the Echo Input of the ultrasonic sensor and pin A1 to the Trigger Output of

the ultrasonic sensor

Sending /

Receiving
Obstacle

Receiving
sound waves

Sending
sound waves

distance t

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 20

R
elev

an
t K

n
o
w

led
g

e

ii. Software settings:

(a) First set pins (9,6), pins (10,11) and pin 5 as Output.

(b) Then make settings to detect ultrasonic sound waves and determine the distance.

void setup()

 {

 Serial.begin(9600); // Initialize Serial port and motor pins

 pinMode(Left_motor_P,OUTPUT); // Pin 8 (PWM)

 pinMode(Left_motor_N,OUTPUT); // Pin 9 (PWM)

 pinMode(Right_motor_P,OUTPUT); // Pin 10 (PWM)

 pinMode(Right_motor_N,OUTPUT); // Pin 11 (PWM)

 //Initialize ultrasonic sensor pin

 pinMode(Ultrasonic_Echo, INPUT); // Define the echo pin as input

 pinMode(Ultrasonic_Trig, OUTPUT); // Define the trigger pint as output

 pinMode(servopin,OUTPUT); //Define servo pin as output

 //digitalWrite(servopin,LOW); //

}

Ultrasonic_detection_function()

{

 digitalWrite(Ultrasonic_Trig, LOW); // set the trig pin to low for 2μs

 delayMicroseconds(2);

 digitalWrite(Ultrasonic_Trig, HIGH); // set the trig pin to high for 10μs，

minimum value = 10μs

 delayMicroseconds(10);

 digitalWrite(Ultrasonic_Trig, LOW); // set the trig pin to low

 float distance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference

between transmitted sound and echo

 distance= distance/5.8/10; // convert the time to distance in mm

 Serial.print(“Distance:"); // display the front distance in mm

 Serial.println(distance); //display distance

}

Using the speed of sound, convert the

time required from sending out the sound

to receiving the sound into distance.

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 21

R
elev

an
t K

n
o
w

led
g

e

(c) Control the servo motor

In order to avoid hitting an obstacle, it is

necessary to allow the ultrasonic sensor to

point in different directions to look for the path

with no obstacles. Putting the ultrasonic

sensor on a servo motor can provide feedback

on the angle that has been rotated, so as to

adjust the direction of travel.

A servo motor can quickly rotate to a

specific direction. The torque of a servo

motor ranges from 0.5 kg to a few kilograms

for dealing with tasks requiring accurate

angular motions. A servo motor needs to use

pulse-width modulated signals for controlling

so that the angles of the motor can be

determined.

• Pin 5 -> Servo signal
control

• GND -> Servo –

• +5V -> Servo +

void servopulse(int servopin,int myangle) //Define this function with servo

control pin and angular position

{

 pulsewidth=(myangle*11)+500; //Convert the angular position to

500-2480 in value

 digitalWrite(servopin,HIGH); //Set Servo pint to High

 delayMicroseconds(pulsewidth); //set the pulse width

 digitalWrite(servopin,LOW); //Set Servo pint to Low

 delay(20-pulsewidth/1000);

}

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 22

R
elev

an
t K

n
o
w

led
g

e

V Practice

1. Experiments

An S3 student using an Arduino controller

for the first time may have some difficulty

controlling the robot in the ways described

above. However, if the students can move on

to the subsequent experiments after succeeding

the previous ones, observing the small robot car

first being able to move according to the

instructions, and then to move away and avoid

obstacles, it will be a very enjoyable experience

for the students. Students may try to modify

the parameters in the programs to make the

robots move in the way students like.

Appendices 2 and 3 provide more complete

programs. If the modifications fail, restore

and try again.

2. Design Project

Material 7 requires students to design and

simulate a smart home. Students can create

the simulation with Arduino also.

3. Further Development

Try to use a remote control of a television

to control the small robot car through infrared,

or download and install an app on a mobile

device to control the robot car through

Bluetooth. These are what Arduino is doing.

The details cannot be covered here only due to

space and time constraints. Interested students

may form a robot interest group, and ask

teachers to join and investigate together. They

may also participate in outside competitions to

observe the work of other students. Appendix

1 and the Interactive Information section of this

material offer more information in this regard.

VI Glossary of Terms

Selective Compliance Assembly Robot Arm (SCARA) 可塑裝配機械臂

End effector 臂端工具

Variable Assembly Language (VAL) ‒ a robot programming language

developed on the basis of BASIC language

VAL

RAPID ‒ a programming language similar to Visual Basic used to

control ABB robots

RAPID

Pulse Width Modulation (PWM) 脈衝寬度調變

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 23

R
elev

an
t K

n
o
w

led
g

e

VII Interactive Information

 Website Content

1. https://www.youtube.com/watch?v=y3IjdOs2qoQ Types of robots

2. https://www.youtube.com/watch?v=9wYkWJeS3lM Robot structures, sensors,

drivers, applications, etc.

3. http://www.freezeray.com/technology.htm Simulations of simple

mechanical components

4. http://www.sciencekits.com/robots1.html Introduction to

mechanical toy kits for

beginners

5. http://education.lego.com/en-us/downloads/?q=%7bfd59d285-fa

69-4de0-b524-9a7d7b47628f%7d

Lego education

downloads

6. http://www.physicsbox.com/supportrobotprogen.html Learning of robot

programming

7. http://www.freezeray.com/technology.htm Simulations of simple

mechanical components

8. https://www.youtube.com/watch?v=X_36ef-gH1E Man versus robot table

tennis match

9. https://www.youtube.com/watch?v=O2yztdAnqhE Sci Fi Science: Robots

10. https://www.youtube.com/watch?v=_D6zAmHOCyY HKUST Robot Design

Contest

11. https://www.youtube.com/watch?v=55TylETrQmA Robot Contest (Robocon)

2015 Hong Kong Contest

12. https://www.youtube.com/watch?v=VnRkkcIYhi4 The 14th Hong Kong

Robotic Olympiad

13. https://www.youtube.com/watch?v=yWAGQIZ9uKM Robot Contest (Robocon)

14. https://www.youtube.com/watch?v=rhFKM5Y6bZA Using robots to assist

filming

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 24

R
elev

an
t K

n
o
w

led
g

e

Appendix 1: Introduction to Hong Kong Robotic Olympic Association and

One of the Robot Competitions

Hong Kong Robotic Olympic Association is a big family formed by a group of serving

enthusiastic technology teachers.

The purpose of the establishment of the association is to enhance the popularisation of

technology education in Hong Kong, allowing secondary and primary students to unleash their

creativity and apply their technological knowledge (e.g. through making computer controlled robots

or wireless remote control robots). The creation of every robot product, from design, production to

programming, is done by the students themselves. They can even use their own products to

participate in the annual Robotic Olympiad to share their learning results with the others.

The following is an excerpt from the rules of one of the competitions organised by Hong Kong

Robotic Olympic Association.

Competition 14. Multi-leg Servo Motor Robot Short Distance Run Competition

We can use servo motor to make different kinds of joint type robot; multi-leg servo motor robot is

one of the simplest forms of joint type robot. Contestant has to build a servo motor robot which

walks with many legs, and program the motion with a computer. The robot that finishes 2m run

with the shortest time is the winner.

Robot Specification

1. No market robot can be used. The robot should be built with servo motors with simple

animal figure. There is no restriction to the number of servo motors used. Each leg should

have at least 2 servo motor joints.

2. The size of the robot cannot exceed 400mm long, 280mm wide and 400mm tall. There is no

limit in weight.

3. The robots must move in walking actions autonomously without connecting to a computer or

external power supply.

4. The robot cannot have installation that would change its original dimension during

competition, such as moving the head from upright position at the beginning and level the

head when it approaches the finish.

Game Field Specification

1. Multi-legs Servo Motor Robot Short Distance Run Competition Board is used for the match.

The track is 2400mm long. The starting area is 400mm long.

2. The runway has four tracks. Each track is 280mm wide. A stepping block is placed at the

starting point.

Game Rules

1. The robot that takes the shortest time to complete the specified distance is the winner.

2. The robot can be switched on and placed at the “START” position first. Contestants can

release the robot after the judge signals start the race and the timer begins to count.

3. If the robot stops moving or falls down during the run, contestant can pick up the robot and

place it at the starting point and restart again. The timer would continue without reset.

4. The maximum game time is 2 minutes. Robots that cannot complete the game would be

recorded 2 minutes game time.

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 25

R
elev

an
t K

n
o
w

led
g

e

Appendix 2: A program for directing an Arduino car to move along a

black line with infrared

//=======POWSOS 出品==========

//Arduino : Line tracking using 2 IR sensors

int Left_Motor_P=9; //Left Motor Positive

int Left_Motor_N=6; //Left Motor Negative

int Right_Motor_P=10; //Right Motor Positive

int Right_Motor_N=11; //Right Motor Negative

const int SensorRight = 7; //Right IR sensor PIN

const int SensorLeft = 3; //Left IR sensor PIN

int SL; //Status of Left IR Sensor

int SR; //Status of Right IR Sensor

#define LowSpeed 45 //

void setup()

{

 pinMode(Left_Motor_P, OUTPUT); // PIN 6 (PWM)

 pinMode(Left_Motor_N, OUTPUT); // PIN 9 (PWM)

 pinMode(Right_Motor_P, OUTPUT); // PIN 10 (PWM)

 pinMode(Right_Motor_N, OUTPUT); // PIN11 (PWM)

 pinMode(SensorRight, INPUT); //Define Right IR Sensor

 pinMode(SensorLeft, INPUT); //Define Left IR Sensor

}

void loop()

 {

 SR = digitalRead(SensorRight);

 SL = digitalRead(SensorLeft);

 // white = LED ON = Status LOW

 // black = LED OFF = Status High

 if (SL == LOW & SR==LOW) //no black,both led on, move forward

 {

 digitalWrite(Left_Motor_P,HIGH);

 digitalWrite(Left_Motor_N,LOW);

 analogWrite(Left_Motor_P,LowSpeed-5);

 analogWrite(Left_Motor_N,0);

 digitalWrite(Right_Motor_P,HIGH);

 digitalWrite(Right_Motor_N,LOW);

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 26

R
elev

an
t K

n
o
w

led
g

e

analogWrite(Right_Motor_P,LowSpeed-5);

 analogWrite(Right_Motor_N,0);

 }

 else

 {

 if (SL == HIGH & SR == LOW) // right on, turn left

 {

 digitalWrite(Right_Motor_P,HIGH);

 digitalWrite(Right_Motor_N,LOW);

 analogWrite(Right_Motor_P,LowSpeed+5);

 analogWrite(Right_Motor_N,0);

 digitalWrite(Left_Motor_P,LOW);

 digitalWrite(Left_Motor_N,LOW);

 }

 else if (SR == HIGH & SL == LOW) // left led on, turn right

 {

 digitalWrite(Right_Motor_P,LOW);

 digitalWrite(Right_Motor_N,LOW);

 digitalWrite(Left_Motor_P,HIGH);

 digitalWrite(Left_Motor_N,LOW);

 analogWrite(Left_Motor_P,LowSpeed+5);

 analogWrite(Left_Motor_N,0);

 }

 else // both

 {

 digitalWrite(Left_Motor_P,LOW);

 digitalWrite(Left_Motor_N,LOW);

 digitalWrite(Right_Motor_P,LOW);

 digitalWrite(Right_Motor_N,LOW);

 }

 }

}

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 27

R
elev

an
t K

n
o
w

led
g

e

Appendix 3: A program for directing an Arduino car to avoid obstacles

with an ultrasonic sensor

// Arduino Ultrasonic car for detecting barriers

//--------------POWSOS 出品--------------------

//2014-07-07

//#include <Servo.h>

int Left_motor_P=9; // Left Motor Positive

int Left_motor_N=6; // Left Motor Negative

int Right_motor_P=10; // Right Motor Positive

int Right_motor_N=11; // Right Motor Negative

int Ultrasonic_Echo = A0; // Echo Pin

int Ultrasonic_Trig =A1; // Trig Pin

int Front_Distance = 0; //

int Right_Distance = 0; //

int Left_Distance = 0; //

int directionn = 8; //

#define Dir_Forward 8 // Move forward

#define Dir_Backward 6 // Move backward

#define Dir_Right 4 // Turn right

#define Dir_Left 2 // Turn left

int servopin=5; // Define pin 5 for servo motor control

int myangle; // Define angular position

int pulsewidth; // Define pulse width

int val;

void setup()

 {

 Serial.begin(9600); // Initialize Serial port

 //Initialize motor pins

 pinMode(Left_motor_P,OUTPUT); // Pin 8 (PWM)

 pinMode(Left_motor_N,OUTPUT); // Pin 9 (PWM)

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 28

R
elev

an
t K

n
o
w

led
g

e

 pinMode(Right_motor_P,OUTPUT); // Pin 10 (PWM)

 pinMode(Right_motor_N,OUTPUT); // Pin 11 (PWM)

 //Initialize ultrasonic sensor pin

 pinMode(Ultrasonic_Echo, INPUT); // Define the echo pin as input

 pinMode(Ultrasonic_Trig, OUTPUT); // Define the trigger pint as output

 pinMode(servopin,OUTPUT); // Define servo pin as output

 digitalWrite(servopin,LOW); // Set servo pin to LOW

 }

 void servopulse(int servopin,int myangle) //Define this function with servo control pin and angular position

{

 pulsewidth=(myangle*11)+500; // Convert the angular position to 500-2480 in value

 digitalWrite(servopin,HIGH); // Set Servo pin to High

 delayMicroseconds(pulsewidth); // Delay servo pin on-time in serveral ms

 digitalWrite(servopin,LOW); // Set Servo pint to Low

 delay(20-pulsewidth/1000);

}

void advance(int a) // Move forward, please adjust the PWM for the left and right motors

{

 digitalWrite(Right_motor_P,HIGH); // Start the right motor

 digitalWrite(Right_motor_N,LOW);

 analogWrite(Right_motor_P,200); // Using PWM 200 for controlling right motor

 analogWrite(Right_motor_N,0);

 digitalWrite(Left_motor_P,HIGH); // Start the left motor

 digitalWrite(Left_motor_N,LOW);

 analogWrite(Left_motor_P,200); // using PWM 200 for controlling left motor

 analogWrite(Left_motor_N,0);

 delay(a * 100); // Control the time delay for moving forward

}

void right(int b) // Turn Right, only set right motor backward

{

 digitalWrite(Right_motor_P,LOW); // Start the right motor (backward)

 digitalWrite(Right_motor_N,HIGH);

 analogWrite(Right_motor_P,0);

 analogWrite(Right_motor_N,150); // Adjust the right motor speed by using PWM value

 digitalWrite(Left_motor_P,LOW); // Stop the left motor

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 29

R
elev

an
t K

n
o
w

led
g

e

 digitalWrite(Left_motor_N,LOW);

 delay(b * 100); // Control the time delay for turning right

}

void left(int c) // Turn Left, only set left motor backward

{

 digitalWrite(Right_motor_P,LOW); // Stop the right motor

 digitalWrite(Right_motor_N,LOW);

 digitalWrite(Left_motor_P,LOW); // Start the left motor (backward)

 digitalWrite(Left_motor_N,HIGH);

 analogWrite(Left_motor_P,0);

 analogWrite(Left_motor_N,150); // Adjust the left motor speed by using PWM value

 delay(c * 100); // Control the time delay for turning left

}

void Brake(int f) // Brake, stop motors

{

 digitalWrite(Right_motor_P,LOW);

 digitalWrite(Right_motor_N,LOW);

 digitalWrite(Left_motor_P,LOW);

 digitalWrite(Left_motor_N,LOW);

 delay(f * 100); // Control the time delay for stopping motor

}

void Reverse(int g) // Backward

{

 digitalWrite(Right_motor_P,LOW); // Start the right motor (backward)

 digitalWrite(Right_motor_N,HIGH);

 analogWrite(Right_motor_P,0);

 analogWrite(Right_motor_N,150); // Adjust the right motor speed by using PWM value

 digitalWrite(Left_motor_P,LOW); // Start the left motor (backward)

 digitalWrite(Left_motor_N,HIGH);

 analogWrite(Left_motor_P,0);

 analogWrite(Left_motor_N,150); // Adjust the right motor speed by using PWM value

 delay(g * 100); // Control the time delay for moving backward

}

void detection() //measure three angular positions (Angles 5, 90 & 175)

{

ask_pin_F(); // Read distance

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 30

R
elev

an
t K

n
o
w

led
g

e

 if(Front_Distance < 25) // Front distance < 25

 {

 Brake(1); // Brake

 Reverse(2); // Backward 0.2s

 }

 if(Front_Distance < 30) // Read front distance <30

 {

 Brake(1); // brake

 ask_pin_R(); // Check right side distance

 ask_pin_L(); // Check left side distance

 for(int i=0;i<=25;i++) { // 保證轉到有效角度

 servopulse(servopin,90);

 }

 if(Left_Distance > Right_Distance) // If left distance > right distance, move to right side

 {

 directionn = Dir_Left; // Move to right side

 }

 else // If left distance < right distance, move to left side

 {

 directionn = Dir_Right; // Move to left side

 }

 if (Left_Distance < 10 && Right_Distance < 10) // If both distances < 10mm, move backward

 {

 directionn = Dir_Backward; // Move backward

 }

 //for(int i=0;i<=25;i++) { //

 //servopulse(servopin,90);

 //}

 }

 else{

 directionn = Dir_Forward; // Move forward

 }

}

void ask_pin_F() // Measure front position distance (90 degree)

{

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 31

R
elev

an
t K

n
o
w

led
g

e

 for(int i=0;i<=25;i++) { // Keep the angular position at 90 degree

 servopulse(servopin,90);

 }

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low for 2μs

 delayMicroseconds(2);

 digitalWrite(Ultrasonic_Trig, HIGH); //Set the trig pin to high for 10μs，minimum value = 10μs

 delayMicroseconds(10);

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low

 float Fdistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted

sound and echo

 Fdistance= Fdistance/5.8/10; // Convert the time to distance in mm

 Serial.print("F distance:"); // Display the front distance in mm

 Serial.println(Fdistance); // Display distance

 Front_Distance = Fdistance; // Pass the Fdistance to Front_Distance

 }

void ask_pin_L() // Measure left position distance at 175 degree

 {

 for(int i=0;i<=35;i++) { // Keep the angular position at 175 degree

 servopulse(servopin,175);

 }

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low for 2μs

 delayMicroseconds(2);

 digitalWrite(Ultrasonic_Trig, HIGH); //Set the trig pin to high for 10μs，minimum value = 10μs

 delayMicroseconds(10);

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low

 float Ldistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted

sound and echo

 Ldistance= Ldistance/5.8/10; // Convert the time to distance in mm

 Serial.print("L distance:"); // Display the left distance in mm

 Serial.println(Ldistance); // Display distance

 Left_Distance = Ldistance; // Pass the Ldistance to Left_Distance

 }

void ask_pin_R() // Measure left position distance at 5 degree

{

 for(int i=0;i<=35;i++) { // Keep the angular position at 5 degree

 servopulse(servopin,5);

 }

TU11

S3 Technology Module E7 Material 11 Robot Fundamentals

 32

R
elev

an
t K

n
o
w

led
g

e

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low for 2μs

 delayMicroseconds(2);

 digitalWrite(Ultrasonic_Trig, HIGH); //Set the trig pin to high for 10μs，minimum value = 10μs

 delayMicroseconds(10);

 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low

 float Rdistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted

sound and echo

 Rdistance= Rdistance/5.8/10; // Convert the time to distance in mm

 Serial.print("R distance:"); // Display the right distance in mm

 Serial.println(Rdistance); // Display distance

 Right_Distance = Rdistance; // Pass the Rdistance to Right_Distance

 }

void loop()

{

 detection(); // Call detection function

 if(directionn == Dir_Backward) // For backward movement

 {

 Reverse(8); // Reverse (800ms)

 Serial.print(" Reverse "); // Indicate "Reverse"

 }

 if(directionn == Dir_Right) // For backward 100ms and backward to right side 400ms

 {

 Reverse(1);

 right(4); //

 Serial.print(" Right "); / /Indicate "Right"

 }

 if(directionn == Dir_Left) // For backward 100ms and backward to left side 400ms

 {

 Reverse(1);

 left(4); //

 Serial.print(" Left "); // Indicate "Left"

 }

 if(directionn == Dir_Forward) // Move forward

 {

 advance(1); //

 Serial.print(" Advance "); // Indicate "forward"

 Serial.print(" ");

 }

}

