

Robot Fundamentals and Control
I	What Is a Robot?
S3 Technology Module E7	Material 11 Robot FundamentalsRelevant Knowledge

		 31
When we mention robots, human-like robots with arms and legs come into the minds of many people. However, this kind of robots mostly appears in science fiction films, places of entertainment, exhibitions and toy stores only. They are very different from their industrial counterparts.
[image: ts4-10-01a]
Industrial robots are sometimes referred to as robot arms. They can carry out simple actions such as picking up putting down or putting a workpiece into a machine taking a workpiece out of a machine. They can also carry out more complex tasks, including searching, transporting, grabbing, aligning, assembling and testing.

[image: ts4-10-01b]

 	(a) A human-like robot	(b) A robot arm

In 1979, Robot Institute of America defined a robot as ‘a re-programmable multi-functional manipulator designed to move materials, parts, tools, or specialised devices through variable programmed motions for the performance of a variety of tasks’. Anything that fulfils the definition can be referred to as a robot, even if it lacks a human shape.Relevant Knowledge

[bookmark: _Toc524260464]

An industrial robot is generally equivalent to a robot arm, which consists of several links connected in series by linear, rotary or prismatic joints. At one end, the robot is fixed to a supporting base, and at the other end, it is equipped with a tool and is controlled to perform tasks.Supporting base

Tool
Linkage joint

 However, robots nowadays have become increasingly popular for entertainment purposes, and also for use in innovative technologies. Examples include humanoids and military applications.

	

	
[image: File:Robot worker.jpg]
	[image: File:Robot dog.jpg]

	[image: File:TOPIO 2.0.jpg]
	
[image: File:Roomba original.jpg]

	Different types of robots

Therefore, a robot can also be defined as ‘an intelligent and programmable man-made semi- or fully independent (self-controlled) object or set of cooperating objects (with a common objective)’.

Exercise:
Which of the following can be regarded as a robot? Explain your answers.

a. [image: quiz-chapter4-a] 	b. [image: robots6]

c. [image: quiz-chapter4-c] 	d. [image: quiz-chapter4-d]
Answers at the bottom of this page

II	Robot Design(a)	Not robots. They are just machines that can walk mechanically.
(b), (c) and (d)	They are robots because all of them are programmable, have end effectors for executing control programs and have ways to move.

The design of a robot in industry is usually made up of six basic constituent elements: a dynamic system (the mechanical structure), end effectors, a computerised digital controller, a drive system, a feedback system and sensors. The interrelationships between the six elements are shown in the following figure.

[image:]Program
Computerised digital controller
Dynamic system
End effectors
Servo drive system
Feedback system
Work objectives
Sensors

The six basic elements of robots
Controller
A robot arm
Work objectives
Feedback
Linkages
(equivalent to human arms)
End effector
(equivalent to a human palm)
Joints
(equivalent to human joints)
Rotation base
(equivalent to a human body)

[bookmark: _Toc512832647][bookmark: _Toc524260465]
[image:]Program

[bookmark: c42]
a.	Structures of Robot ArmsSensors

	Since 1980s, there has been a rapid growth in the application of robot arms in industry, particularly in the manufacturing and welding processes of cars. Identifying the different types of mechanical robot structures is an effective and easy way for classifying robots which is also a starting point for learning robotics.

i. Cartesian Coordinate RobotsA typical Cartesian coordinate robot

A Cartesian coordinate robot is formed by 3 prismatic joints, where the axes coincide with the X, Y and Z planes. Cartesian coordinate robots with the horizontal member supported at both ends are sometimes called Gantry robots. They are usually quite large in size. Cartesian coordinate robots have three perpendicular translational slides that move along the x-, y- and z-axes, and thus they are also called xyz robots or linear robots. They have a rectangular work volume.

ii. Cylindrical Robots

A cylindrical robot rotates about its central axis, forming a cylindrical work space. It has two linear axes and one rotary axis at its base. The arm of it can reach the surrounding positions by rotating about and moving up and down along the vertical member of the robot. The arm of it can also extend or contract. The work capcity of cylindrical robots is cylindrical.

[image: 2]
[image: 4_6]

		Schematic diagram of a cylindrical robot A typical cylindrical robot

iii. Spherical / Polar Coordinate Robots

A polar robot has one linear axis and two rotary axes. It is able to rotate in two different directions about its central axis, with the third joint moves in translation, thus forming a hemisphere or a polar coordinate system.

[image: fig4][image: 4_8]

	

A typical polar coordinate robot Schematic diagram of a polar coordinate robot

iv. SCARA Robots
[image: File:KUKA Industrial Robot KR10 SCARA.jpg]SCARA (Selective Compliance Assembly Robot Arm) is a robot design developed in the late 1970s in Japan. It is a type of articulated robot. Its shoulder and elbow joints rotate about vertical axes and there is a prismatic joint at the shoulder for elevation.
The basic configuration of a SCARA is a robot with multiple degrees of freedom and has the capability of horizontal positioning, similar to a shoulder and elbow held perfectly parallel to the ground.	A typical SCARA robot

[image: 4_10]

Work space of a polar coordinate robot
v.
[image: parallrobot]Parallel Robots
A parallel robot is made up of three parallelograms with four degrees of freedom: three components of translations and one angle of rotation. These parallelograms ensure the consistent orientation of one end of a link with respect to those of the others. The rotational axis is only affecting the end effector. As the arms are parallel to each other, the weight of a load can be evenly distributed over all three links.

 A delta type parallel robot

Schematic diagram and work space of a parallel robot

vi. [image: D CIMG1181]Articulated / Rotary Robots
Articulated or joint-arm robots are the most versatile robots available. An articulated robot is a mechanical manipulator that closely resembles the natural form of a human arm with at least three rotary joints.

One of the linkages of an articulated robot is connected to the base (A1) and can rotate around it. Other linkages are connected to joints A2 and A3. Compared with a human arm, the above three parts are the shoulder, bicep and forearm respectively.
For a six-axis jointed-arm robot, there are three more axes, A4, A5 and A6, connected to the wrist, which are responsible for the pitch, roll and yaw motions respectively. With these extra axes added, this kind of robot can move the end effector to any point at any orientation within the work space.

A typical articulated robot for handling materials

滾動

Yaw

Pitch
Roll

Schematic diagram of an articulated robot
[bookmark: _Toc524260466]
b.	End EffectorsSchematic diagram of an articulated robot

The arms of robots can be installed with tools such as clamps, welding guns, electromagnets, suction pads, spray guns and grippers for performing a variety of specific jobs. Clamps are a kind of commonly used multi-functional robot arm tool. There are different designs of clamps. They can be used to tightly grip, hold and transfer workpieces or tools, or point them in suitable directions. For instance, a clamp with three axes can perform complex actions including tilting forwards or backwards, swirling, and swinging sideways.

[image: 10-4a][image: 10-8b]

Robots using different clamps

End effectors commonly used in production lines:
	[image: D CIMG1192]
	[image: fig4]
	[image: robot_hand]

	Vacuum gripper
	Magnetic gripper
	Finger type mechanical gripper

[bookmark: _Toc524260467]
c.	Computerised Digital Controllers

The computerised control systems of robots control the operation of each part of the robots. A variety of programs can be input and stored in the systems where interactions between work, priorities of work and work sequences are determined. In a production system, the computer of the robot may also need to control or communicate with other machines such as conveyor belts and processing machines. Different robot computers may use different programming languages, for example, VAL and RAPID.
Most robots also use a piece of apparatus that is connected to the controller called trainer. A trainer can be used to control a series of motions of a robot, for instance, to direct the welding gun on the robot arm to point at each welding tip. The robot will at the same time record the information and store it in the computer so that in the real operation, the robot can reuse the data. This method can save time in programming.
Actuators are used to control the operations of the axes and maintain the directions of movements. As the robot needs to withstand the weights of various components, it will involve more changes in its motion. As a result, the motion performance of actuators is very important. Commands about the directions of movements are constantly sent from the robot computer and feedbacks are checked at the same time to ensure the parts moving along the correct paths. This process requires a high-speed computer to send out the commands and read the motion status of the machine at a reasonable speed.

[bookmark: _Toc524260469]d.	Measures of Feedback Systems

The feedback device of a robot measures the position, moving velocity and acceleration of each axis. The position of each of the axes can be determined in either of the following ways with the data from the feedback system.
(i)	Absolute ‒ Set any point as the origin (0 , 0 , 0) and compare the current position with it.
(ii)	Relative ‒ Compare the current position with the previous position.
The main axis can set any point as the origin and take it as the reference point to perform a linear movement. However, absolute measurement values are usually used for the clamps as the systems must obtain the actual positions of the clamps when robots begin to operate.
[bookmark: _Toc524260470]e.	Sensors
Robots use sensors to identify and evaluate changes in position during various interactive actions, differences in patterns, obstacles or failure of external systems. The following table lists some commonly used sensors.
	Sense
	Sensors
	Things that can be detected

	Hearing
	Microphones
	Sound

	Vision
	Light dependent resistors
	Light

	Touch
	Thermometers and contact tips
	Heat, weights, pressure, shapes, dimensions, positions

	Smell
	Smoke or smell detectors
	Smell, smoke

Some commonly used sensors
[bookmark: _Toc512832653][bookmark: _Toc524260471]
III	Operations of Industrial Robots

The operations of industrial robots usually have a large degree of flexibility, so that they can be more easily adapted to handle the demands of different tasks. Industrial robots are controlled by computer programs. Similar to numerical control machines, the operations of robots can be changed by simply modifying the computer programs. Both the computers of robots and numerical control machines need a large capacity of memory, sub-programs that can be executed repeatedly, devices for editing the programs, input and output devices for auxiliary functions, and high-speed computing capability.

i.	Modes of Operation

Computers of robots need to be able to carry out some special functions such as using trainers for setting up programs, maintaining linear motions of clamps when the robot arms are swinging, and automatically compensating the force when holding heavy objects.

[image: ts4-10-05z]
Horizontal motion

Vertical motion

Maintaining the linear motions of clamps

[bookmark: _Toc512832654][bookmark: _Toc524260472]The modes of operation of robots can be divided into two main types:
(a) 	Point to point ‒ Robots move between various individual and specific positions according to the instructions of the program.
(b) 	Continuous path ‒ Robots follow the path specified by the program completely.
[bookmark: _Toc512832655][bookmark: _Toc524260473][bookmark: _Toc512832663][bookmark: _Toc524260481]
ii.	Sources of Power

There are 3 common types of drive systems: electrical, hydraulic and pneumatic.
Electrical systems use electricity to provide power and use motors to drive robots. Advantages of electrical systems are that they are simple, clean and quiet. However, they cannot provide sufficient power to lift or move heavy objects and are thus mostly used in medium-sized or small robots.
Hydraulic systems use pumps to produce pressurised oil to provide power. A large driving force can be generated in a short period of time. Hydraulic systems can control the movements of robots precisely. However, these systems are more expensive and their structures are more complex.
Pneumatic systems have similar advantages as those of hydraulic systems. Pneumatic systems can produce more rapid movements but with smaller power. Most automated factories are already equipped with pneumatic facilities. Thus, applying pneumatic systems to drive robots can save costs. However, since air is easier to be compressed, the preciseness of the control of robot positions and movements is lower. As a result, robots using pneumatic systems usually require auxiliary components or special designs to assist the positioning.

[bookmark: _Toc512832665][bookmark: _Toc524260483]
IV	Robots Controlled by Arduino
There are lots of ways to design and control robots. Here, we will use Arduino as the controller, and the small experimental car shown in the figure below will be used as the basis of each of the following experiments. The arrangement of the pins is listed in the following table.
Infrared sensing
Ultrasonic sensing
Servo motor (under the control board)
Motor
(under the control board)
Arduino control board

 A small experimental car operated by an Arduino control board

	Arduino pin
	Input / Output
	Function

	3
	Digital input
	Left IR sensor

	5
	Digital Output
	Servo Signal

	6
	PWM Output
	Left Motor Control

	7
	Digital input
	Right IR sensor

	9
	PWM Output
	Left Motor Control

	10
	PWM Output
	Right Motor Control

	11
	PWM Output
	Right Motor Control

	A1
	Digital Output
	Ultrasound Trigger

	A0
	Digital input
	Ultrasound Echo

Pin arrangement

a.	Left and Right Wheels under the Car
To make the small car (robot) move, both the hardware and the software need to be set up properly.
i.	Hardware settings:
 	Connect pins (9,6) to the motor of the left wheel and pins (10,11) to the motor of the right wheel.
ii.	Software settings:
First set pins (9,6) and pins (10,11) as Output.
	void setup()
{
	pinMode(Left_Motor_P, OUTPUT); 		// PIN 6 (PWM)
	pinMode(Left_Motor_N, OUTPUT); 		// PIN 9 (PWM)
	pinMode(Right_Motor_P, OUTPUT); 	// PIN 10 (PWM)
	pinMode(Right_Motor_N, OUTPUT); 		// PIN11 (PWM)
}

Then design the control of the rotation of the two motors.
Set the output requirements of the pins for the forward rotation and backward rotation of the motors.
	Motor control signal
	P
	N

	Left/Right Motor (Forward)
	High
	Low

	Left/Right Motor (Backward)
	Low
	High

	Motor Stop
	Low
	Low

Speed control (rapid forward for 2 seconds, slow forward for 2 seconds):
	loop()	
{
	digitalWrite(Left_Motor_P, HIGH); 	// Forward setup
	digitalWrite(Left_Motor_N, LOW);
	analogWrite(Left_Motor_P, SpeedValue);
	analogWrite(Left_Motor_N,0);
	digitalWrite(Right_Motor_P, HIGH); 	//Forward setup
	digitalWrite(Right_Motor_N, LOW);
	analogWrite(Right_Motor_P,SpeedValue);
	analogWrite(Right_Motor_N,0);
}

A function for stopping is also required:
	Stop_function()
 {
	digitalWrite(Left_Motor_P, LOW);
	digitalWrite(Left_Motor_N, LOW);
	digitalWrite(Right_Motor_P, LOW);
	digitalWrite(Right_Motor_N, LOW);
 }

b.	Adding Infrared (IR) Sensing
After setting the rotation of the motors, we only have to add infrared sensors at the bottom of the car and then the car will be able to move along a black line drawn on the floor.

Both sensors ‘see’ black
Only right wheel spins forward
Only left wheel spins forward

Both wheels spin forward at same speed
Right sensor ‘sees’ black
Left sensor ‘sees’ black

Robot turns
left
Robot goes straight
Robot turns right

Using the feedback from the infrared sensors to determine the rotation of the motors

We will use the function digitalRead to read the signals from the IR sensors.
	[bookmark: _Hlk480237269]const int SensorLeft = 3;	//Left IR sensor PIN
const int SensorRight = 7;	//Right IR sensor PIN
int SL; //Status of Left IR Sensor
int SR; //Status of Right IR Sensor
void setup()
{
	pinMode(SensorRight, INPUT);	//Define Right IR Sensor
	pinMode(SensorLeft, INPUT);		//Define Left IR Sensor
	Serial.begin(9600); 		//Set Serial baud rate 9600bps
}
void loop()
{
	SL = digitalRead(SensorLeft);
	SR = digitalRead(SensorRight);
	delay(1000);
}

Same as designing the rotation of the motors at the bottom of the car before, both the hardware and the software of the sensors need to be set up properly.
i.	Two sets of hardware settings:
Connect pins (9,6) to the motor of the left wheel and pins (10,11) to the motor of the right wheel.
Connect pin 3 to the left sensor and pin 7 to the right sensor.
ii.	Software settings:
First set pins (9,6) and pins (10,11) as Output, and pins 3 and 7 as Input.
	void setup()
{
pinMode(Left_Motor_P, OUTPUT);	// PIN 6 (PWM)
pinMode(Left_Motor_N, OUTPUT); 	// PIN 9 (PWM)
pinMode(Right_Motor_P, OUTPUT);	// PIN 10 (PWM)
pinMode(Right_Motor_N, OUTPUT);	// PIN11 (PWM)
pinMode(SensorRight, INPUT);	//Define Right IR Sensor
pinMode(SensorLeft, INPUT); 	//Define Left IR Sensor
}

Then make settings to detect the black line, and control the left and the right wheels to respond correspondingly.
(a)	Move forward
	if (SL == LOW & SR==LOW) 	//no black, both led on, move forward
 {
	digitalWrite(Left_Motor_P,HIGH); 	// set Left motor (Forward)
	digitalWrite(Left_Motor_N,LOW);
	analogWrite(Left_Motor_P,LowSpeed-5);	//adjust speed by using PWM
	analogWrite(Left_Motor_N,0);
	digitalWrite(Right_Motor_P,HIGH);	// set Left motor (Forward)
	digitalWrite(Right_Motor_N,LOW);
	analogWrite(Right_Motor_P,LowSpeed-5);
	analogWrite(Right_Motor_N,0);
 }

(b)	Turn left
	if (SL == HIGH & SR == LOW) 			// right on, turn left
{
	digitalWrite(Right_Motor_P,HIGH);
	digitalWrite(Right_Motor_N,LOW);
	analogWrite(Right_Motor_P,LowSpeed+5);
	analogWrite(Right_Motor_N,0);
	digitalWrite(Left_Motor_P,LOW);
	digitalWrite(Left_Motor_N,LOW);
 }

(c)	Turn right
	if (SR == HIGH & SL == LOW) 			// left led on, turn right
{
	digitalWrite(Right_Motor_P,LOW);
	digitalWrite(Right_Motor_N,LOW);
	digitalWrite(Left_Motor_P,HIGH);
	digitalWrite(Left_Motor_N,LOW);
	analogWrite(Left_Motor_P,LowSpeed+5);
	analogWrite(Left_Motor_N,0);
 }

(d)	Stop
	if (SR == HIGH & SL == HIGH) 			// stop
 {
	digitalWrite(Left_Motor_P,LOW);
	digitalWrite(Left_Motor_N,LOW);
	digitalWrite(Right_Motor_P,LOW);
	digitalWrite(Right_Motor_N,LOW);
 }

c.	Adding Ultrasonic Sensing
Moving along a black line on the floor actualises automatic moving initially. Through adding ultrasonic sensing to enable the robot to avoid obstacles, automatic moving is further enhanced.
Sending / Receiving
Obstacle
Receiving sound waves
Sending sound waves

distance t

Same as before, both the hardware and the software of the sensor need to be set up properly.
i.	Hardware settings:
Connect pins (9,6) to the Output control of the left wheel motor and pins (10,11) to the Output control of the right wheel motor.
Connect pin 5 to the Output control of the servo motor.
Connect pin A0 to the Echo Input of the ultrasonic sensor and pin A1 to the Trigger Output of the ultrasonic sensor

ii.	Software settings:
(a)	First set pins (9,6), pins (10,11) and pin 5 as Output.
void setup()
 {
	Serial.begin(9600);	// Initialize Serial port and motor pins
	pinMode(Left_motor_P,OUTPUT); 	// Pin 8 (PWM)
	pinMode(Left_motor_N,OUTPUT); 	// Pin 9 (PWM)
	pinMode(Right_motor_P,OUTPUT); 	// Pin 10 (PWM)
	pinMode(Right_motor_N,OUTPUT); 	// Pin 11 (PWM)
	//Initialize ultrasonic sensor pin
	pinMode(Ultrasonic_Echo, INPUT); 	// Define the echo pin as input
	pinMode(Ultrasonic_Trig, OUTPUT);	// Define the trigger pint as output
	pinMode(servopin,OUTPUT);	//Define servo pin as output
	//digitalWrite(servopin,LOW); 	//
}

(b)	Then make settings to detect ultrasonic sound waves and determine the distance.
Ultrasonic_detection_function()
{
	digitalWrite(Ultrasonic_Trig, LOW); 	// set the trig pin to low for 2μs
	delayMicroseconds(2);
	digitalWrite(Ultrasonic_Trig, HIGH); 	// set the trig pin to high for 10μs，minimum value = 10μs
	delayMicroseconds(10);
	digitalWrite(Ultrasonic_Trig, LOW); 	// set the trig pin to low
	float distance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted sound and echo
	distance= distance/5.8/10; 	// convert the time to distance in mm
	Serial.print(“Distance:"); 	// display the front distance in mm
	Serial.println(distance); 	//display distance
}

Using the speed of sound, convert the time required from sending out the sound to receiving the sound into distance.

[image: 描述: T2h2R4XdRbXXXXXXXX_!!462592119](c)	Control the servo motor
In order to avoid hitting an obstacle, it is necessary to allow the ultrasonic sensor to point in different directions to look for the path with no obstacles. Putting the ultrasonic sensor on a servo motor can provide feedback on the angle that has been rotated, so as to adjust the direction of travel.

A servo motor can quickly rotate to a specific direction. The torque of a servo motor ranges from 0.5 kg to a few kilograms for dealing with tasks requiring accurate angular motions. A servo motor needs to use pulse-width modulated signals for controlling so that the angles of the motor can be determined. · Pin 5 ->	Servo signal control
· GND -> Servo –
· +5V -> Servo +

void servopulse(int servopin,int myangle)	//Define this function with servo control pin and angular position
{
	pulsewidth=(myangle*11)+500;	//Convert the angular position to 500-2480 in value
	digitalWrite(servopin,HIGH);	//Set Servo pint to High
	delayMicroseconds(pulsewidth);	//set the pulse width
	digitalWrite(servopin,LOW);	//Set Servo pint to Low
	delay(20-pulsewidth/1000);
}

[image: 描述: http://www.tik.ee.ethz.ch/mindstorms/sa_nxt/content/images/us_setup3.jpg]
[bookmark: _Toc512832666][bookmark: _Toc524260484]
V	Practice
1.	Experiments

An S3 student using an Arduino controller for the first time may have some difficulty controlling the robot in the ways described above. However, if the students can move on to the subsequent experiments after succeeding the previous ones, observing the small robot car first being able to move according to the instructions, and then to move away and avoid obstacles, it will be a very enjoyable experience for the students. Students may try to modify the parameters in the programs to make the robots move in the way students like. Appendices 2 and 3 provide more complete programs. If the modifications fail, restore and try again.

2.	Design Project

Material 7 requires students to design and simulate a smart home. Students can create the simulation with Arduino also.

3.	Further Development

Try to use a remote control of a television to control the small robot car through infrared, or download and install an app on a mobile device to control the robot car through Bluetooth. These are what Arduino is doing. The details cannot be covered here only due to space and time constraints. Interested students may form a robot interest group, and ask teachers to join and investigate together. They may also participate in outside competitions to observe the work of other students. Appendix 1 and the Interactive Information section of this material offer more information in this regard.

VI	Glossary of Terms
	Selective Compliance Assembly Robot Arm (SCARA)
	可塑裝配機械臂

	End effector
	臂端工具

	Variable Assembly Language (VAL) ‒ a robot programming language developed on the basis of BASIC language
	VAL

	RAPID ‒ a programming language similar to Visual Basic used to control ABB robots
	RAPID

	Pulse Width Modulation (PWM)
	脈衝寬度調變

VII	 Interactive Information
	[bookmark: _Hlk480239043]
	Website
	Content

	1.
	https://www.youtube.com/watch?v=y3IjdOs2qoQ
	Types of robots

	2.
	https://www.youtube.com/watch?v=9wYkWJeS3lM
	Robot structures, sensors, drivers, applications, etc.

	3.
	http://www.freezeray.com/technology.htm
	Simulations of simple mechanical components

	4.
	http://www.sciencekits.com/robots1.html
	Introduction to mechanical toy kits for beginners

	5.
	http://education.lego.com/en-us/downloads/?q=%7bfd59d285-fa69-4de0-b524-9a7d7b47628f%7d
	Lego education downloads

	6.
	http://www.physicsbox.com/supportrobotprogen.html
	Learning of robot programming

	7.
	http://www.freezeray.com/technology.htm
	Simulations of simple mechanical components

	8.
	https://www.youtube.com/watch?v=X_36ef-gH1E
	Man versus robot table tennis match

	9.
	https://www.youtube.com/watch?v=O2yztdAnqhE
	Sci Fi Science: Robots

	10.
	https://www.youtube.com/watch?v=_D6zAmHOCyY
	HKUST Robot Design Contest

	11.
	https://www.youtube.com/watch?v=55TylETrQmA
	Robot Contest (Robocon) 2015 Hong Kong Contest

	12.
	https://www.youtube.com/watch?v=VnRkkcIYhi4
	The 14th Hong Kong Robotic Olympiad

	13.
	https://www.youtube.com/watch?v=yWAGQIZ9uKM
	Robot Contest (Robocon)

	14.
	https://www.youtube.com/watch?v=rhFKM5Y6bZA
	Using robots to assist filming

Appendix 1: Introduction to Hong Kong Robotic Olympic Association and One of the Robot Competitions
Hong Kong Robotic Olympic Association is a big family formed by a group of serving enthusiastic technology teachers.
The purpose of the establishment of the association is to enhance the popularisation of technology education in Hong Kong, allowing secondary and primary students to unleash their creativity and apply their technological knowledge (e.g. through making computer controlled robots or wireless remote control robots). The creation of every robot product, from design, production to programming, is done by the students themselves. They can even use their own products to participate in the annual Robotic Olympiad to share their learning results with the others.
The following is an excerpt from the rules of one of the competitions organised by Hong Kong Robotic Olympic Association.
	Competition 14. Multi-leg Servo Motor Robot Short Distance Run Competition
We can use servo motor to make different kinds of joint type robot; multi-leg servo motor robot is one of the simplest forms of joint type robot. Contestant has to build a servo motor robot which walks with many legs, and program the motion with a computer. The robot that finishes 2m run with the shortest time is the winner.
Robot Specification
1.	No market robot can be used. The robot should be built with servo motors with simple animal figure. There is no restriction to the number of servo motors used. Each leg should have at least 2 servo motor joints.
2.	The size of the robot cannot exceed 400mm long, 280mm wide and 400mm tall. There is no limit in weight.
3.	The robots must move in walking actions autonomously without connecting to a computer or external power supply.
4.	The robot cannot have installation that would change its original dimension during competition, such as moving the head from upright position at the beginning and level the head when it approaches the finish.
Game Field Specification
1.	Multi-legs Servo Motor Robot Short Distance Run Competition Board is used for the match. The track is 2400mm long. The starting area is 400mm long.
2.	The runway has four tracks. Each track is 280mm wide. A stepping block is placed at the starting point.
Game Rules
1.	The robot that takes the shortest time to complete the specified distance is the winner.
2.	The robot can be switched on and placed at the “START” position first. Contestants can release the robot after the judge signals start the race and the timer begins to count.
3.	If the robot stops moving or falls down during the run, contestant can pick up the robot and place it at the starting point and restart again. The timer would continue without reset.
4.	The maximum game time is 2 minutes. Robots that cannot complete the game would be recorded 2 minutes game time.

Appendix 2:	A program for directing an Arduino car to move along a black line with infrared
	//=======POWSOS出品==========
//Arduino : Line tracking using 2 IR sensors

int Left_Motor_P=9;	//Left Motor Positive
int Left_Motor_N=6;	//Left Motor Negative
int Right_Motor_P=10;	//Right Motor Positive
int Right_Motor_N=11;	//Right Motor Negative
const int SensorRight = 7; 	//Right IR sensor PIN
const int SensorLeft = 3; 	//Left IR sensor PIN
int SL; 	//Status of Left IR Sensor
int SR; 	//Status of Right IR Sensor
#define LowSpeed 45	//
void setup()
{
	pinMode(Left_Motor_P, OUTPUT); 	// PIN 6 (PWM)
	pinMode(Left_Motor_N, OUTPUT); 	// PIN 9 (PWM)
	pinMode(Right_Motor_P, OUTPUT); 	// PIN 10 (PWM)
	pinMode(Right_Motor_N, OUTPUT); 	// PIN11 (PWM)
	pinMode(SensorRight, INPUT); 	//Define Right IR Sensor
	pinMode(SensorLeft, INPUT); 	//Define Left IR Sensor
}

void loop()
 {
	SR = digitalRead(SensorRight);
	SL = digitalRead(SensorLeft);
 						// white = LED ON = Status LOW
 						// black = LED OFF = Status High
 if (SL == LOW & SR==LOW)	//no black,both led on, move forward
 	{
 digitalWrite(Left_Motor_P,HIGH);
 digitalWrite(Left_Motor_N,LOW);
 analogWrite(Left_Motor_P,LowSpeed-5);
 analogWrite(Left_Motor_N,0);
 digitalWrite(Right_Motor_P,HIGH);
 digitalWrite(Right_Motor_N,LOW);
analogWrite(Right_Motor_P,LowSpeed-5);
 analogWrite(Right_Motor_N,0);

	}
 else
	{
		if (SL == HIGH & SR == LOW)		// right on, turn left
		{
 digitalWrite(Right_Motor_P,HIGH);
 digitalWrite(Right_Motor_N,LOW);
 analogWrite(Right_Motor_P,LowSpeed+5);
 analogWrite(Right_Motor_N,0);
 digitalWrite(Left_Motor_P,LOW);
 digitalWrite(Left_Motor_N,LOW);
 }
 else if (SR == HIGH & SL == LOW) 	// left led on, turn right
 {
 digitalWrite(Right_Motor_P,LOW);
 digitalWrite(Right_Motor_N,LOW);
 digitalWrite(Left_Motor_P,HIGH);
 digitalWrite(Left_Motor_N,LOW);
 analogWrite(Left_Motor_P,LowSpeed+5);
 analogWrite(Left_Motor_N,0);
 }
 else 								// both
 {
 digitalWrite(Left_Motor_P,LOW);
 digitalWrite(Left_Motor_N,LOW);
 digitalWrite(Right_Motor_P,LOW);
 digitalWrite(Right_Motor_N,LOW);
 }
 }
}

Appendix 3:	A program for directing an Arduino car to avoid obstacles with an ultrasonic sensor
	// Arduino Ultrasonic car for detecting barriers
//--------------POWSOS出品--------------------
//2014-07-07

//#include <Servo.h>
int Left_motor_P=9;			// Left Motor Positive
int Left_motor_N=6;			// Left Motor Negative

int Right_motor_P=10;		// Right Motor Positive
int Right_motor_N=11;		// Right Motor Negative

int Ultrasonic_Echo = A0;		// Echo Pin
int Ultrasonic_Trig =A1; 	// Trig Pin

int Front_Distance = 0; 	//
int Right_Distance = 0; 	//
int Left_Distance = 0; 	//
int directionn = 8; 			//

#define Dir_Forward 	8		// Move forward
#define Dir_Backward 	6 	// Move backward
#define Dir_Right 	4 	// Turn right
#define Dir_Left 	2 	// Turn left

int servopin=5;				// Define pin 5 for servo motor control
int myangle;				// Define angular position
int pulsewidth;				// Define pulse width
int val;

void setup()
 {
	Serial.begin(9600); 				// Initialize Serial port
	//Initialize motor pins
	pinMode(Left_motor_P,OUTPUT); 		// Pin 8 (PWM)
	pinMode(Left_motor_N,OUTPUT); 		// Pin 9 (PWM)
	pinMode(Right_motor_P,OUTPUT); 		// Pin 10 (PWM)
	pinMode(Right_motor_N,OUTPUT); 	// Pin 11 (PWM)
	//Initialize ultrasonic sensor pin
	pinMode(Ultrasonic_Echo, INPUT); 		// Define the echo pin as input
	pinMode(Ultrasonic_Trig, OUTPUT); 	// Define the trigger pint as output
	
 pinMode(servopin,OUTPUT);			// Define servo pin as output
 digitalWrite(servopin,LOW); 		// Set servo pin to LOW
 }

 void servopulse(int servopin,int myangle) //Define this function with servo control pin and angular position
{
	pulsewidth=(myangle*11)+500;			// Convert the angular position to 500-2480 in value
	digitalWrite(servopin,HIGH);			// Set Servo pin to High
	delayMicroseconds(pulsewidth);			// Delay servo pin on-time in serveral ms
	digitalWrite(servopin,LOW);			// Set Servo pint to Low
	delay(20-pulsewidth/1000);
}

void advance(int a) // Move forward, please adjust the PWM for the left and right motors
{
	digitalWrite(Right_motor_P,HIGH); 	// Start the right motor
	digitalWrite(Right_motor_N,LOW);
	analogWrite(Right_motor_P,200);		// Using PWM 200 for controlling right motor
	analogWrite(Right_motor_N,0);
	digitalWrite(Left_motor_P,HIGH); 		// Start the left motor
	digitalWrite(Left_motor_N,LOW);
	analogWrite(Left_motor_P,200);			// using PWM 200 for controlling left motor
	analogWrite(Left_motor_N,0);
	delay(a * 100); 					// Control the time delay for moving forward
}

void right(int b) 					// Turn Right, only set right motor backward
{
	digitalWrite(Right_motor_P,LOW); 	// Start the right motor (backward)
	digitalWrite(Right_motor_N,HIGH);
	analogWrite(Right_motor_P,0);
	analogWrite(Right_motor_N,150);		// Adjust the right motor speed by using PWM value
	digitalWrite(Left_motor_P,LOW);		// Stop the left motor
	digitalWrite(Left_motor_N,LOW);
	delay(b * 100);						// Control the time delay for turning right
}
void left(int c) 					// Turn Left, only set left motor backward
{
	digitalWrite(Right_motor_P,LOW);		// Stop the right motor
	digitalWrite(Right_motor_N,LOW);
	digitalWrite(Left_motor_P,LOW); 		// Start the left motor (backward)
	digitalWrite(Left_motor_N,HIGH);
	analogWrite(Left_motor_P,0);
	analogWrite(Left_motor_N,150);		// Adjust the left motor speed by using PWM value
	delay(c * 100);						// Control the time delay for turning left
}

void Brake(int f) 				// Brake, stop motors
{
	digitalWrite(Right_motor_P,LOW);
	digitalWrite(Right_motor_N,LOW);
	digitalWrite(Left_motor_P,LOW);
	digitalWrite(Left_motor_N,LOW);
	delay(f * 100);						// Control the time delay for stopping motor
}
void Reverse(int g) 				// Backward
{
 digitalWrite(Right_motor_P,LOW); 	// Start the right motor (backward)
 digitalWrite(Right_motor_N,HIGH);
 analogWrite(Right_motor_P,0);
 analogWrite(Right_motor_N,150);		// Adjust the right motor speed by using PWM value
 digitalWrite(Left_motor_P,LOW); 		// Start the left motor (backward)
 digitalWrite(Left_motor_N,HIGH);
 analogWrite(Left_motor_P,0);
 analogWrite(Left_motor_N,150);		// Adjust the right motor speed by using PWM value
 delay(g * 100); 				// Control the time delay for moving backward
}

void detection() 					//measure three angular positions (Angles 5, 90 & 175)
{
	
ask_pin_F(); 			// Read distance
	
	if(Front_Distance < 25) 		// Front distance < 25
	{
		Brake(1); 		// Brake
		Reverse(2); 		// Backward 0.2s
	}

	if(Front_Distance < 30)				// Read front distance <30
	{
		Brake(1); 			// brake
		ask_pin_R(); 		// Check right side distance
		ask_pin_L(); 		// Check left side distance	
		for(int i=0;i<=25;i++) {			// 保證轉到有效角度
	 servopulse(servopin,90);
	 }
		if(Left_Distance > Right_Distance) 	// If left distance > right distance, move to right side
		{
			directionn = Dir_Left; 	// Move to right side
		}
		else 						// If left distance < right distance, move to left side
		{
			directionn = Dir_Right; 	// Move to left side
		}
		if (Left_Distance < 10 && Right_Distance < 10) // If both distances < 10mm, move backward
		{
			directionn = Dir_Backward; 	// Move backward
		}
		
 //for(int i=0;i<=25;i++) {	//
 //servopulse(servopin,90);
 //}
	}
	else{
		directionn = Dir_Forward; 	// Move forward
	}
}

void ask_pin_F() 						// Measure front position distance (90 degree)
{
 for(int i=0;i<=25;i++) {				// Keep the angular position at 90 degree
 servopulse(servopin,90);
 }
 digitalWrite(Ultrasonic_Trig, LOW); 	// Set the trig pin to low for 2μs
 delayMicroseconds(2);
 digitalWrite(Ultrasonic_Trig, HIGH);	//Set the trig pin to high for 10μs，minimum value = 10μs
 delayMicroseconds(10);
 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low
 float Fdistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted sound and echo
 Fdistance= Fdistance/5.8/10; 	// Convert the time to distance in mm
 Serial.print("F distance:"); 		// Display the front distance in mm
 Serial.println(Fdistance); 		// Display distance
 Front_Distance = Fdistance; 	// Pass the Fdistance to Front_Distance
 }

void ask_pin_L() 						// Measure left position distance at 175 degree
 {
 for(int i=0;i<=35;i++) {				// Keep the angular position at 175 degree
 servopulse(servopin,175);
 }
 digitalWrite(Ultrasonic_Trig, LOW); 	// Set the trig pin to low for 2μs
 delayMicroseconds(2);
 digitalWrite(Ultrasonic_Trig, HIGH); 	//Set the trig pin to high for 10μs，minimum value = 10μs
 delayMicroseconds(10);
 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low
 float Ldistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted sound and echo
 Ldistance= Ldistance/5.8/10; 	// Convert the time to distance in mm
 Serial.print("L distance:"); 		// Display the left distance in mm
 Serial.println(Ldistance); 	// Display distance
 Left_Distance = Ldistance; 	// Pass the Ldistance to Left_Distance
 }
void ask_pin_R() 						// Measure left position distance at 5 degree

{
 for(int i=0;i<=35;i++) { 			// Keep the angular position at 5 degree
 servopulse(servopin,5);
 }
 digitalWrite(Ultrasonic_Trig, LOW); 	// Set the trig pin to low for 2μs
 delayMicroseconds(2);
 digitalWrite(Ultrasonic_Trig, HIGH); 	//Set the trig pin to high for 10μs，minimum value = 10μs
 delayMicroseconds(10);
 digitalWrite(Ultrasonic_Trig, LOW); // Set the trig pin to low
 float Rdistance = pulseIn(Ultrasonic_Echo, HIGH); // Read the time difference between transmitted sound and echo
 Rdistance= Rdistance/5.8/10; 	// Convert the time to distance in mm
 Serial.print("R distance:"); 		// Display the right distance in mm
 Serial.println(Rdistance); 	// Display distance
 Right_Distance = Rdistance; 	// Pass the Rdistance to Right_Distance
 }

void loop()
{
 detection(); 					// Call detection function
 if(directionn == Dir_Backward) 		// For backward movement
 {
 Reverse(8); 		// Reverse (800ms)
 Serial.print(" Reverse "); 			// Indicate "Reverse"
 }
 if(directionn == Dir_Right) 	// For backward 100ms and backward to right side 400ms
 {
 Reverse(1);
 right(4); 			//
 Serial.print(" Right "); 			/ /Indicate "Right"
 }
 if(directionn == Dir_Left) 		// For backward 100ms and backward to left side 400ms
 {
 Reverse(1);
 left(4); 			//
 Serial.print(" Left "); 			// Indicate "Left"
 }

 if(directionn == Dir_Forward) 	// Move forward
 {
 advance(1); 			//
 Serial.print(" Advance "); 			// Indicate "forward"
 Serial.print(" ");
 }
}

[bookmark: _GoBack]
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.emf

image14.png

image15.jpeg

image16.jpeg

image17.jpeg

image18.png

image19.jpeg

image20.jpeg

image21.jpeg

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.jpeg

image29.jpeg
-

image30.jpg

image31.png

image32.png

image33.png

image34.png

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png
Black line on
white floor —__| IR sensors

Left sensor Both sensors Right sensors.
“sees” black “see” white “sees” black
] .]
Left wheel Both wheels spin at Right wheel
slows down same speed slows down
] .]
Robot tums Robot goes Robot tums
left straight right

image46.png
Black line on
white floor —__| IR sensors

Left sensor Both sensors Right sensors.
“sees” black “see” white “sees” black
] .]
Left wheel Both wheels spin at Right wheel
slows down same speed slows down
] .]
Robot tums Robot goes Robot tums
left straight right

image47.jpeg
c<1>>

image48.jpeg
c<1>>

image49.jpeg

image50.jpeg

