Effective Learning and Teaching of Home Economics / Technology and Living Series: Food Preparation and Cooking Skills with Meal Planning in Basic Food Science 5th July, 2016

Ms. Ivy Ng
Adjunct Lecturer at HKU SPACE
Registered Dietitian, UK
MSc in Dietetics & Human Nutrition
Former President, HK Nutrition Association
Former Chairperson & Founder, HKU SPACE Human Nutrition & Dietetics Alumni
Auditor, ISO 22000:2005 Food Safety Management Systems

Topics

- Gelatinisation of starch
- Dextrinisation of starch
- Denaturation of protein (gluten) in wheat flour
- Raising agents in flour dough

- Takes place under moist heat
- Starch granule swells
- Loss of amylose from the swelling granule
- Gelatinisation temperature depends on the type of starch
- Produces a thick cooked paste
- e.g. thickener for sauces

Amylose molecule

Amylopectin molecule

- Swelling and disorganisation of starch granules heated in water
- Measures of gelatinisation
 - Swelling of granules
 - Increased viscosity (thickness or stickiness)
 - Increased translucency
 - Increased solubility

- Factors affecting gelatinisation
 - Ratio of amylose to amylopectin
 - Amount of water
 - Heating time
 - Presence of other substances

Dextrinisation of Starch

- Takes place under dry heat
- Thermal degradation of starch
- Browning occurs
- Different from Maillard reaction in which amino acid is involved
- Such starches produce thin cooked pastes
- Little thickening power, e.g. brown gravy
- Example: toast a slice of bread in toaster

Denaturation of Protein (Gluten) in Wheat Flour

- Proteins are amino acid polymers
- Denaturation is a process in which proteins lose the quaternary structure (three-dimensional structure of multiple polypeptides), tertiary structure (three-dimensional structure) and secondary structure (hydrogen bonds between peptide group chains) which are present in their native state
- Primary structure (linear structure of amino acids) is intact
- Protein can be denatured by:
 - Application of some external stress
 - Compound such as a strong acid or base
 - Concentrated inorganic salt
 - Organic solvent (e.g., alcohol or chloroform)
 - Radiation
 - Heat

Denaturation of Protein (Gluten) in Wheat Flour

- Flour does not contain gluten
- Flour contains two proteins (glutenin and gliadin)
- When water is added to flour, gluten is formed
- Gluten requires mixing to form a strong continuous network
- Fully developed dough should form a uniformly thin, smooth film without tearing

Denaturation of Protein (Gluten) in Wheat Flour

- When batters and doughs are baked, most of the moisture evaporates or is absorbed by gelatinising starch granules.
- Loss of moisture, presence of heat, gluten sets into a firm and rigid yet porous structure that holds its shape
- Egg protein, when heated, also set into a firm, rigid structure

- Raising agents, also known as leavening agents, cause baked goods to rise
- Providing lightness and volume to baked goods
- Leavened baked goods are more porous and tender
- During baking, heat causes matter to change from one physical form to another
 - Solid to liquid (butter melts)
 - liquid to gas (water to vapour)
- Molecules move faster and spread farther apart
- This expansion is the basis for leavening

- There are three main leavening gases in baked goods:
 - Steam
 - Air
 - Carbon dioxide

Steam (water vapour), gaseous form of water

- A physical leavener
- Forms when water, milk, eggs, syrups, or any other moisturecontaining ingredient is heated
- e.g. choux pastry is leavened almost exclusively by steam

Air

- A physical leavener
- Added to batters and doughs by physical means, by:
 - Creaming
 - Whipping
 - Sifting
 - Folding
 - Kneading
 - Stirring
- Sponge cake and angel food cake contain eggs that are whipped, and this adds volumes of air to the batter.

Carbon dioxide

- Although it is present in air, in trace amounts only
- It is formed from two sources:
 - Yeast fermentation, which is a biological leavener
 - Chemical leavening agents
 - Baking powder
 - · Baking soda
- When carbon dioxide is warmed from the heat of the oven, it moves into existing air bubbles, causing them to expand.
- Breads and cookies are examples of baked products that rely on carbon dioxide to raise

• Yeast are usually applied in baked goods with presence of wheat (gluten), so that porous and rigid structure can be formed

Baking powder

- Acidic
- Made by combining soda and a dry acid, such as cream of tartar
- Milder by 2-3 times

Baking soda

- Alkaline
- Stronger
- Reacts with acid to produce bubbles
- Usually used in products containing buttermilk, brown sugar, yoghurt, lemon juice, cocoa powder, etc.
- Overuse produces metallic aftertaste

家政科/科技與生活科有效的學與教系列: 處理和烹調食物的技巧與膳食計畫 - 食品科學基礎 2016年7月5日

Ms. Ivy Ng
Adjunct Lecturer at HKU SPACE
Registered Dietitian, UK
MSc in Dietetics & Human Nutrition
Former President, HK Nutrition Association
Former Chairperson & Founder, HKU SPACE Human Nutrition & Dietetics Alumni
Auditor, ISO 22000:2005 Food Safety Management Systems

課題

- 澱粉的糊化作用
- 澱粉的糊精作用
- 小麥粉中的蛋白質變性(麵筋)
- 粉糰的發麵劑

- 在潮濕的熱力下發生
- 澱粉的顆粒膨脹
- 直鏈澱粉從膨脹顆粒流失
- 糊化温度取決於澱粉的種類
- 產生濃稠的糊
- 例如:醬汁的增稠劑

• 直鏈澱粉分子

• 支鏈澱粉分子

- 澱粉顆粒在水中受熱,膨脹,並解體
- 測量糊化
 - 顆粒膨脹
 - 粘度增加(稠度或粘性)
 - 透明度增加
 - 溶解度增加

- 影響糊化的因素
 - 直鏈澱粉與支鏈澱粉的比例
 - 水的份量
 - 加熱時間
 - 其他存在的物質

澱粉的糊精作用

- 在乾熱下發生
- 澱粉熱降解
- 澱粉變褐色
- 有別於涉及氨基酸的梅納反應
- 這種澱粉產生稀薄的糊
- 稠化能力較弱,例如肉汁
- 例子: 烘麵包器烤烘麵包

小麥粉中的蛋白質變性(麵筋)

- 蛋白質是氨基酸聚合物
- 變性是一個過程,其中蛋白質失去四級結構(三維多肽的結構), 三級結構(立體結構)和二級結構(肽基鏈之間的氫鍵),其存 在於它們的天然狀態
- 一級結構(氨基酸線性結構)是完整的
- 蛋白質變性原因:
 - 使用一些外加壓力
 - 化合物,如強酸或強鹼
 - 濃縮的無機鹽
 - 有機溶劑(例如,醇或氯仿)
 - 輻射
 - 熱力

小麥粉中的蛋白質變性(麵筋)

- 麵粉不含有麵筋
- 麵粉中含有兩種蛋白質(谷蛋白和醇溶蛋白)
- 麵粉加入水後,產生麵筋
- 麵筋需要經過混合來形成一個強大的連續網絡
- 充分混合的粉糰應該形成一個均勻、薄、光滑的膜並且沒有撕裂

小麥粉中的蛋白質變性(麵筋)

- 當麵粉糊和粉糰被烤焗時,大部份的水份被蒸發或由糊化澱粉顆粒吸收。
- 當麵筋流失水份,且有熱力的存在時,形成一個硬而堅固但多孔的結構,能夠保持形狀
- 當雞蛋中的蛋白質遇熱,也形成一個堅固的結構

- 發麵劑,又被稱為膨鬆劑,可令烘焙食品膨脹
- 為烘焙食品提供鬆軟度和增加體積
- 膨鬆了的烘焙食品比沒有膨鬆的較多孔和鬆軟
- 在烘焙時,熱力使物質從一種物理形態改變為另外一種
 - 固體變為液體(牛油溶解)
 - 液體變為氣體(水變為水蒸汽)
- 分子活動較快,彼此之間的距離也較遠
- 這種擴張,就是膨鬆的原理

- 在烘焙食品中,有三種令食物膨鬆的氣體:
 - 蒸汽
 - 空氣
 - 二氧化碳

蒸汽(水蒸汽)是水的氣態形式

- 是一物理性膨脹劑
- 當水、牛奶、雞蛋、糖漿或任何其他含水的成分被加熱時便形成
- 例如:蛋油鬆皮,幾乎完全是透過蒸汽令批皮膨鬆

空氣

- 是一物理性膨脹劑
- 以物理形式被添加到麵粉糊和粉糰內:
 - 擂油
 - 打起
 - 篩
 - 拌入
 - 搓
 - 攪勻
- •海綿蛋糕和天使蛋糕包含打起了的雞蛋,增加了麵粉糊的空氣含量

二氧化碳

- 雖然存在於空氣,但只佔微量
- 從兩個來源形成:
 - 酵母發酵,是一種生物膨鬆劑
 - 化學膨鬆劑
 - 發粉
 - 食用梳打粉(碳酸氫鈉)
- 當焗爐的溫度上升時,二氧化碳變暖,並移動到已存在的氣泡中, 使氣泡膨脹
- 麵包和曲奇是依靠二氧化碳而膨脹的烘焙產品例子

• 酵母通常應用於含有小麥(麵筋)的焙烤食品中,它讓多孔和堅固結構可形成

發粉

- 酸性
- 由梳打粉及乾酸,如撻撻粉組合而成
- 溫和了2-3倍

食用梳打粉

- 鹼性
- 較強
- 與酸產生反應,產生氣泡
- 通常用於含酪乳漿、黃糖、酸奶酪、檸檬汁、可可粉等的產品
- 過度使用會產生金屬後味

問與答