Solutions to Challenge Corner, 1st Issue of IMOment

In this problem, a positive integer is said to be *strange* if it has an odd number of distinct positive divisors. For example, 4 is strange because it has 3 distinct positive divisors, namely 1, 2 and 4, while 10 is not strange because it has 4 distinct positive divisors, namely 1, 2, 5 and 10. How many strange numbers are there among 1, 2, ..., 2016?

Solution: If *a* is a positive divisor of a positive integer *n*, then so as $b = \frac{n}{a}$, and $\frac{n}{b} = a$. Thus the positive divisors of *n* can be paired up, so *n* always has an even number of positive divisors, unless for some positive divisor *a*, it turns out that $\frac{n}{a} = a$, i.e. $n = a^2$ is a perfect square. Among 1, 2, ..., 2016, there are 44 perfect squares, and hence there are 44 strange numbers.

2. Given that the expression below represents a real number, find it.

$$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}}$$

Solution: Let $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$. Then $x = \sqrt{2 + x}$, so $x^2 - x - 2 = 0$. Solving, x = 2 or x = -1 (rejected).

3. Assume that on a certain social networking website, there is no limit a user's number of friends, and friendship is mutual (i.e. if A is a friend of B, then B is also a friend of A). Prove that there are two Mathbook users with the same number of Mathbook friends.

Solution: Suppose there are a total of *n* Mathbook users. Then each user's number of friends is between 0 and n-1 (inclusive). If no two users have the same number of friends, the number of friends of the *n* users must be 0, 1, ..., n-1. Now, the user with 0 friends does not have any friends while the user with n-1 friends is friends with every other user, a contradiction.

4. Let *P* be a point in the plane of $\triangle ABC$. Let *X* be a point in the plane such that the midpoint of *PX* is the midpoint of *BC*. Let *Y* be a point in the plane such that the midpoint of *PY* is the midpoint of *CA*. Let *Z* be a point in the plane such that the midpoint of *PZ* is the midpoint of *AB*. Show that *AX*, *BY* and *CZ* meet at a point. (Hint: Try the method introduced in the article on coordinate geometry in this issue!)

Solution: We use coordinate geometry. Let
$$A = (a_1, a_2)$$
, $B = (b_1, b_2)$,
 $C = (c_1, c_2)$ and $P = (p_1, p_2) \circ$ Then $Z = \left(\frac{a_1 + b_1 - p_1}{2}, \frac{a_2 + b_2 - p_2}{2}\right)$,
 $X = \left(\frac{b_1 + c_1 - p_1}{2}, \frac{b_2 + c_2 - p_2}{2}\right)$ and $Y = \left(\frac{c_1 + a_1 - p_1}{2}, \frac{c_2 + a_2 - p_2}{2}\right)$ (prove it!).
Hence the midpoint of CZ is $\left(\frac{a_1 + b_1 + c_1 - p_1}{2}, \frac{a_2 + b_2 + c_2 - p_2}{2}\right)$.

Similarly, the midpoint of *AX* and the midpoint of *BY* are also this point.

List of awardees:

Name of student	Name of school
Cheung Kai Hei Trevor	St. Paul's Co-educational College
Chung Hoi Ki	Shatin Pui Ying College
Wong Ka Wai	St. Paul's Co-educational College
Lai Chun Ho	Po Leung Kuk Mrs. Ma Kam Ming
	Cheung Fook Sien College
Wong Tak Ki	Po Leung Kuk Mrs. Ma Kam Ming
	Cheung Fook Sien College

Awardees will also be notified with a separate e-mail.