| SUNDAY | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | |--|---|--|---|---|--|---| | | | | | | | 1 | | | | | | | | +t | | | | | | | | $\lim_{x \to 0} \frac{\sin x}{x} = ?$ | | 2
+八 | 3
+ħ | 4
=+ | 5 Given a positive integer sequence | 6
#Ξ | 7
#≡ | 8
立秋 | | For a convex polyhedral, $V - E + F = ?$ | In a square $ABCD$, construct a circle with diameter AD . E is a point on AB such that CE is a tangent of the circle. What does the area of CBE equal? | $\frac{15768}{3942} = ?$ | $\{a_n\}$ satisfies that n divides a_n and $ a_n - a_{n+1} \le 5$, find the largest possible largest possible value of $\frac{a_1}{13}$. | 6 is the smallest perfect number, i.e. a number whose sum of divisors equals twice itself. | 7 is the smallest number for which the periodic sequence of $\frac{1}{n}$ is of length $n-1$. | This was the date when David
Hilbert first presented some of the
Hilbert problems in the 1900
International Congress in
Mathematicians. | | 9
#五 | 10
#六 | 11
#± | 12
#八 | 13 世九 | 14
七月 | 15
初二 | | Since $9 = 3^{2^1}$, 9 is an exponential factorial. | 10 is the sum of digits of N if N is the smallest two digit number with the property that $1111 \times N$ is a 6-digit number. | 11 is the smallest integer that is not a Nivenmorphic number in base 10. | 12 is the ninth Perrin number. | If $a^{12}-1$ is divisible by n for all integers a which is coprime with n . Find n . | Let p, q, r be primes with $pqr = 5(p+q+r)$.
Find $p+q+r$. | How many solutions to Znám's problem of length 7 exist? | | 16
初三 | 17
初四 | 18
初五 | 19
初六 | 20
初七 | 21
初八 | 22
初九 | | If $a = m^n = n^m$ for some unequal integers m and n , what is a ? | Today is the 408th (or 414th) birthday of Pierre de Fermat (some dispute about his year of birth). | 18 is one of the Harshad numbers. | If $IMO \times 57 = HK \times 2016$, find the value of HK . | 20 is the smallest primitive abundant number. | Today is the 226th birthday of Augustin Louis Cauchy. | When cutting a circle with just six line segments, the maximum number of pieces that can be so created is 22. | | 23
處暑 | 24
+- | 25
+= | 26
+= | 27
+四 | 28
+五 | 29
+* | | There were 23 problems published by David Hilbert in 1900. | The 4 th term of the geometric sequence with first term 3 and common ratio 2. | In US coins, a quarter is equal to 25 cents. | Difference of the second pair of amicable numbers: 1210 - 1184. | 27!+1 is a prime. | Given that $157 \times n = 4396$, find n . | Do you know that $n^2 + 29$ is prime for $n = 0, 1,, 28$! | | 30
++ | 31
+八 | 57 Th | 10 | _ | | | If $\sin x^{\circ} = \frac{1}{2}$, where 0 < x < 90. If $a_1 = 1$ and $a_n = 2a_{n-1}$, find a_5 . HONG KONG 2016 August 2015 第五十七屆國際數學奧林匹克 57th International Mathematical Olympiad