| SUNDAY | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | |---|--|---|--|---|---|---| | | | 1
+丸 | In the series $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, if we remove all terms with the denominator having digit 2, | 3 #− | 4
#_ | 5
#Ξ | | | | Find the smallest value of p for which $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ diverges. | then the resulting series converges. Combining the fact that $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ diverges, this shows that there exists infinitely many prime p with a digit 2. | 3 is the number of non-collinear points that will determine a plane and a circle. | In the IMO Hall of Fame, what is the maximum number of IMO Gold medals obtained by a contestant so far? | There are 5 types of regular polyhedra. | | 6
#四 | 7
#五 | 8
白露 | 9
#± | 10
#八 | 11
世九 | 12
≡+ | | How many ways of writing 365625 as sum of two squares (ignoring order and signs) are there? | What is the minimum number of distinct integer-sided rectangles needed to tile a rectangle such that no 2 rectangles share a common side-length? | The square of any odd number is 1 (mod 8). | 1!+2!+3!=? | Do you know that if you write the number 10 twice as 1010, you get the binary representation of 10! | What is the smallest prime p such that $2^p - 1$ is not a prime? | 12 is the smallest weight such that a cusp form exists. | | 13
八月 | 14
初二 | 15
初三 | 16
初四 | 17
初五 | 18
初六 | 19
初七 | | There are 13 books of Euclid's Elements. | 14 is represented as E in the hexadecimal base. | Find the coefficient of x^2 in $\left(\frac{1}{2} + 4x\right)^6$. | If $P(1) = P(2) = P(3) = 1$ and $P(n) = P(n-2) + P(n-3)$, find $P(12)$. | Today is the 189 th birthday of Georg
Friedrich Bernhard Riemann. | If $\cos 2x^{\circ} - \cos 4x^{\circ} = \frac{1}{2}$,
where $0 < x < 45$, find x . | Andrew Wiles's revelation for the proof of Fermat's last theorem came this day in 1994. | | 20
初八 | 21
初九 | 22
初十 | 23
秋分 | 24
+= | 25
+= | 26
+¤ | | 20 can be written as the sum of three Fibonacci numbers uniquely. | 21 is the 3 rd star number. | 22 is a centered heptagonal number. | If φ is the golden ratio, $\left[\varphi^{2015}\right] \pmod{23} = ?$ | There is a card game called "24". | A quadrilateral inscribed in a circle has sides 7, 15, 20 and 24. Find the diameter of the circle. | There are 26 letters in the English alphabet. | | 27
中秋節 | Some people are having an event. When they are asked to form groups of 6, 4 people cannot form a group. When they are then asked to form groups | 29
+± | 30
+八 | | | | | 27 is the only positive integer that is 3 times the sum of its digits. | of 13, 2 people cannot form a group. What is the minimum number of people gathering? | The planet Saturn requires over 29 years to orbit the Sun. | 30 is the smallest number with 3 distinct prime factors. | | | | SEPTEMBER 2015