| SUNDAY | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | |---|---|---|--|--|---|---| | | 1
#≡ | 2
#四 | 3
#五 | 4
立春 | 5
±± | 6 | | | How many integer solutions to $x^a - y^b = 1$ where $x, y, a, b > 1$ are there? | Find the value of x for which $x + x = x \times x = x^{x}$. | 3 is the only prime that is 1 less than a perfect square. | Given that the polynomial equation $1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}=0$ is solvable by radicals, find the largest value of n . | The number of primes of the form $2^{2^n} + 1$ known so far is 5. | 6 is a Ramsey number, $R(3, 3) = 6$. | | 7
世九 | 8 | 9
年初二 | 10
年初三 | 11
初四 | 12
初五 | 13
初力 | | e Day | A lucky number in Chinese
culture, symbolising "prosperity"
(in Chinese, "恭喜發財!"). | Six recurring nines appear in the decimal places 762 through 767 of π . This is known as the Feynman point. | Integer closest to π^2 . | If $(\tan 15^\circ)^3 = a + b\sqrt{3}$, where a and b are integers, find $a + b$. | There are 12 Latin squares of size 3×3. | Today is the 211 th birthday of Peter
Dirichlet. | | 14
初七 | 15
初八 | 16
初九 | 17
初十 | 18
+- | 19
雨水 | 20
+= | | 14 is the 4 th Catalan number. | Today is the 452 nd birthday of Galileo Galilei. | Anomalous calculation: $\frac{64}{16} = \frac{4}{1} = 4$. | Do you know that $n^2 + n + 17$ is a prime for $n = 0, 1, 2,, 15$! | Let $f(x) = 3x^3$. Find $f'''(2016)$. | 19 is the second Cuban prime. | Let ABC be a triangle, $AB = 25$, $BC = 52$, $CA = 63$. Find the altitude of ABC with respect to the base AC . | | 21
+四 | 22
+五 | 23
+∴ | 24
+± | 25 | 26
+n | 2 7 | | The sequence 1, 1, 2, 3, 5, 8, 13, 21, is defined so that every consecutive 8 terms have the same sum. Find the 2016 th term in this sequence. | There are five numbers. Taking the average of 4 of the numbers at a time, we get 28, 29, 30, 31 and 32. Find the smallest number. | The smallest number of people needed so that the probability of having 2 people with the same birthday is greater than 0.5. | Given that rooms A and B are only 6 walking steps away, if you can either take 1, 2, or 3 walking steps a time, how many ways are there to walk from A to B? | Given $a + b = 10$ and $ab = 32.5$, find $a^3 + b^3$. | 26 is a repdigit in 222_3 and in 22_{12} . | Four numbers form a geometric sequence. If their sum is 175 and the largest number is 64, find the smallest number. | | 28
#- | 29
#_ | | | | | | | The price of a product increases by 20% and is then sold with 40% off. If the price is decreased by x % overall, find x . | The chance of being born on leap day is about 1 in 1,461. | | | | | | February 2016