| SUNDAY | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | |--|---|--|---|--|--|---| | | | 1
#Ξ | 2
#四 | 3
#五 | 4
#六 | 5
驚蟄 | | | | There is no right-angled triangle with three sides rational and area equals 1. | 2 is the only integer greater than 1 with $\varphi(n)$ odd, where $\varphi(n)$ is the number of positive integer from 1 to n that are relatively prime to n . | Today is the 171st birthday of Georg Cantor. | $2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}} = ?$ | Do you know that 5 is the smallest positive integer whose square is the sum of two nonzero squares! | | 6
世八 | 7
廿九 | 8
≡+ | 9
初一 | In the overlapping triangles $\triangle ABC$ and $\triangle ABE$ sharing common side AB , $\angle EAB$ and $\angle ABC$ are right angles, $AB = 5$, $BC = 3$, $AE = 7$, and AC and BE | 11
初三 | 12
初四 | | $\sqrt{1^3 + 2^3 + 3^3} = ?$ | 7 is the largest prime followed by a cube. | Fact: 1 byte = 8 bits. | The sum $9^0 + 9^1 + 9^2 + \dots + 9^n$ is always a triangular number. | intersect at <i>D</i> . What is the difference between the areas of $\triangle ADE$ and $\triangle BDC$? | How many ways can we tessellate a 3 x 4 rectangle with 2 x 1 rectangles? | 12 is the smallest sublime number. | | 13
初五 | 14
初六 | 15
初七 | 16
初八 | 17
初九 | 18
初十 | 19
+- | | A triangle has side lengths n , $n+1$ and $n+2$ and its area is 84. Find n . | i eight sum pi and it was delicious.
Happy pi day! | 15 is the 4 th Bell number. | Find the number of positive integers which is not greater than 48 and are coprime with 48. | 17 ² can be written as the sum of 1, 2, 3, 4, 5, 6, 7, 8 distinct squares. Try them out! | Fact: 18 is the legal age in many countries. | An integer $n \ge 2$ is said to be "good" if n divides $(n-1)!+1$. Find the 8^{th} "good" integer. | | 20
春分 | 21
+≡ | 22
+四 | 23
+五 | 24
+* | 25
耶穌受難節 | 26
耶穌受難節翌日 | | Find the integer part of $(1+0.001)^{3000} + (1-0.001)^{3000}$. | Four rectangles arranged as \boxplus shape. Their areas (left to right, top to bottom) are 6, 10, x and 35 respectively. Find x . | Let I be the incentre of ABC , D be a point on the circumcircle of ABC so that A , I , D are collinear (draw it out). If $\angle IBD = 79^{\circ}$ and $\angle BDA = x^{\circ}$, find x . | Today is the 134 th birthday of Emmy Noether. | Find the number of zeros at the end of 100!. | Find the maximum integer n such that $n + 2$ divides $n^3 + 35$. | Today is the 103 rd birthday of Paul
Erdős, after whom "Erdős numbers"
are named. | | 27
復活節 | 28
復活節星期一 | 29
#- | 30
#Ξ | 31
#≡ | | | | The product of divisors of 3^{53} is $(3^{53})^k$. Find k . | Today is the 88th Birthday of Alexander Grothendieck. | Do you know that 29 is the 7 th Lucas number! | 30 is the Coxeter number in the Lie Group E_8 . | Today is the 420 th birthday of René Descartes. | | | **March 2016**