SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
		1 #Ξ	2 #四	3 #五	4 #六	5 驚蟄
		There is no right-angled triangle with three sides rational and area equals 1.	2 is the only integer greater than 1 with $\varphi(n)$ odd, where $\varphi(n)$ is the number of positive integer from 1 to n that are relatively prime to n .	Today is the 171st birthday of Georg Cantor.	$2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}} = ?$	Do you know that 5 is the smallest positive integer whose square is the sum of two nonzero squares!
6 世八	7 廿九	8 ≡+	9 初一	In the overlapping triangles $\triangle ABC$ and $\triangle ABE$ sharing common side AB , $\angle EAB$ and $\angle ABC$ are right angles, $AB = 5$, $BC = 3$, $AE = 7$, and AC and BE	11 初三	12 初四
$\sqrt{1^3 + 2^3 + 3^3} = ?$	7 is the largest prime followed by a cube.	Fact: 1 byte = 8 bits.	The sum $9^0 + 9^1 + 9^2 + \dots + 9^n$ is always a triangular number.	intersect at <i>D</i> . What is the difference between the areas of $\triangle ADE$ and $\triangle BDC$?	How many ways can we tessellate a 3 x 4 rectangle with 2 x 1 rectangles?	12 is the smallest sublime number.
13 初五	14 初六	15 初七	16 初八	17 初九	18 初十	19 +-
A triangle has side lengths n , $n+1$ and $n+2$ and its area is 84. Find n .	i eight sum pi and it was delicious. Happy pi day!	15 is the 4 th Bell number.	Find the number of positive integers which is not greater than 48 and are coprime with 48.	17 ² can be written as the sum of 1, 2, 3, 4, 5, 6, 7, 8 distinct squares. Try them out!	Fact: 18 is the legal age in many countries.	An integer $n \ge 2$ is said to be "good" if n divides $(n-1)!+1$. Find the 8^{th} "good" integer.
20 春分	21 +≡	22 +四	23 +五	24 +*	25 耶穌受難節	26 耶穌受難節翌日
Find the integer part of $(1+0.001)^{3000} + (1-0.001)^{3000}$.	Four rectangles arranged as \boxplus shape. Their areas (left to right, top to bottom) are 6, 10, x and 35 respectively. Find x .	Let I be the incentre of ABC , D be a point on the circumcircle of ABC so that A , I , D are collinear (draw it out). If $\angle IBD = 79^{\circ}$ and $\angle BDA = x^{\circ}$, find x .	Today is the 134 th birthday of Emmy Noether.	Find the number of zeros at the end of 100!.	Find the maximum integer n such that $n + 2$ divides $n^3 + 35$.	Today is the 103 rd birthday of Paul Erdős, after whom "Erdős numbers" are named.
27 復活節	28 復活節星期一	29 #-	30 #Ξ	31 #≡		
The product of divisors of 3^{53} is $(3^{53})^k$. Find k .	Today is the 88th Birthday of Alexander Grothendieck.	Do you know that 29 is the 7 th Lucas number!	30 is the Coxeter number in the Lie Group E_8 .	Today is the 420 th birthday of René Descartes.		

March 2016