| SUNDAY | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | |--|--|--|---|--|---|--| | | 1
世九 | 2
≡+ | 3
七月 | 4
初二 | 5
初三 | 6
初四 | | | $A = \{x: x + 3 > 16\},$ $B = \{x: 2x < 30\},$ $C = \{x: x \text{ is an integer}\}.$ Find the number of elements in $A \cap B \cap C$. | $\begin{array}{cc} 5 A 7 \\ \times B \\ \hline 4 A C 6 \end{array}$ If $A > C$, find the value of A . | If a is the units digit of $2^{2016} + 0^{2016} + 1^{2016} + 6^{2016}$, find the value of a. | Find the remainder of 6 ⁵⁸ divided by 13. | If $2 - i$ is a root of $x^2 + cx + d = 0$, where c and d are real numbers, find the value of d . | Given that the polar coordinates of A and B are (3, 120°) and (4, 210°) Find the area of $\triangle OAB$. | | 7
立秋 | 8
初六 | 9
初七 | 10
初八 | 11
初九 | 12
初十 | 13 | | Given $x^2 + 2 = p(x-1)(x-2) + q(x-15) + r$. If $7d = p + q + r$, find the value of d . | If the number 301.02 is written in base four and the digit 2 has the value $\frac{1}{A}$, $A = ?$ | If $x^4 = y^9$ and $a = 4 \log_y x$, find the value of a. | $ (\sqrt{2} + \sqrt{1})^{-1} + (\sqrt{3} + \sqrt{2})^{-1} + \dots + (\sqrt{100} + \sqrt{99})^{-1} + 1 = ?. $ | If the number of ways of selecting 2 representatives from a team of <i>n</i> members is 55. Find the value of <i>n</i> . | The maximum value of $\frac{83x^2 - 166x + 275}{4x^2 - 8x + 20}$ is | Given that $\begin{cases} \alpha^2 = -3\alpha + 2 \\ \beta^2 = -3\beta + 2 \end{cases}$ where $\alpha \neq \beta$. Then $\alpha^2 + \beta^2 = \underline{\hspace{1cm}}$. | | 14
+= | 15
+= | 。
- 16
+四 | 17
+五 | 18 +☆ | 19
++ | 20 | | Given that $AE : EB = 1 : 3$,
AD : DC = 4 : 3.
If the area of $\triangle BDE = 6$,
the area of $\triangle ABC$ is | If the graph of $y = x^2 - 1$ is
translated 5 units to the right and
then reflected about the y-axis, the
resulting graph is $y = px^2 + qx + r$,
find the value of $p + q + r$. | If the area of trapezium $ABCD$ is 192 cm^2 , find CD . | Given that $f(x+3) = 2x^2 - 3x - 27$.
Find the remainder when $f(x-1)$ is divided by x . | Let T(n) denote the maximum
number of regions of n lines
dividing a circle.
T(1) = 2, $T(2) = 4$, $T(3) = 7Find the value of n if T(n) = 172.$ | How many trailing zero are there in the product $1 \times 2 \times 3 \times \times 80$? | Find the number of shortest routes from <i>P</i> to <i>Q</i> . | | 21 + n | 22 =+ | 23
處暑 | 24
#= | 25
#= | 26 世四 | 27
| | Find the total number of positive integral solutions of the equation $x + y + z = 8$. | If the radius of the inscribed circle is 4 cm and the perimeter of the triangle is 52 cm, find the length of the longest side of the triangle. | α and β are the roots of the equation $x^2 - x - 11 = 0$. Find the value of $\alpha^3 + 12\beta$. | The lengths of the sides of a right-angled triangle form an arithmetic sequence. If the length of the hypotenuse is 10, find its perimeter. | A semi-circle with radius 2.5 is inscribed in a right-angled triangle <i>ABC</i> with centre <i>O</i> lying on the hypotenuse <i>AC</i> of length $10\sqrt{3}$. Find the area of ΔABC . | AB is a tangent to the circle at T . O is the centre, $AODC$ is a straight line with $OD = CD$, $\angle CBD = 32^{\circ}$ and $\angle BAC = x^{\circ}$. Find the value of x . | Given that $xyz = -555$, where x , y and z are distinct integers. $\frac{\min(x + y + z)}{-7} =$ | | 28 | 29
#± | 30
廿八 | 31
世九 | | | | | The numerals and the letters in the triangle represent the areas of the six smaller triangles. Find the value of $x + y$. | Given that the equation $x^2 - (\sqrt{5} + 28)x + \sqrt{5}n - 29 = 0$ has one positive integral root. Find the value of n . | In $\triangle ABC$, $\frac{\tan A + \tan B}{\tan B} = \frac{2c}{\sqrt{3}b}$ and $A = x^{\circ}$. Find the value of x . | The figure shows 677 two identical golden triangles (an isosceles triangle with vertical angle 36°). Find the value of <i>x</i> . | | | | August 2016