劉徽與割圓術

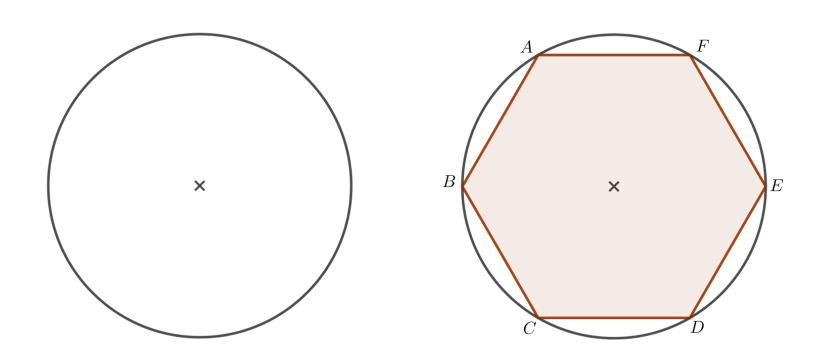
教育局數學教育組 2025年

劉 與 割 圖

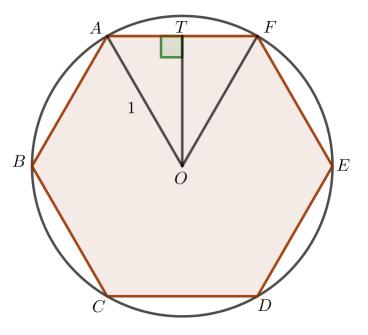
》劉徽(約公元263年),中國魏晉時期數學家,生平不詳,為 《九章算術》作注,並為《九章算術》的公式、解法提供證 明,彌補了《九章算術》的不足。他運用「割圓術」,由正 六邊形開始,演算到正九十六邊形,求得圓周率的值為3.14, 後世稱之為「徽率」。

劉徽(約公元 263年)

「割圓術」,從圓內接正六邊形開始



「割圓術」,從圓內接正六邊形開始



設圓的半徑為1。求圓內接正六邊形的面積。

$$OA = 1$$
 , $AT = \frac{1}{2}$, $OT = \frac{\frac{\sqrt{3}}{2}}{2}$

$$= \underbrace{(1)\left(\frac{\sqrt{3}}{2}\right)\frac{1}{2} = \frac{\sqrt{3}}{4}}$$

圓內接正六邊形的面積 = $(6)\left(\frac{\sqrt{3}}{4}\right) = \frac{3\sqrt{3}}{2}$

由於圓面積 = $\pi(1)^2$ = π ,若以圓內接正六邊形的面積作為圓面積的近似值,可求得 π 的近似值。

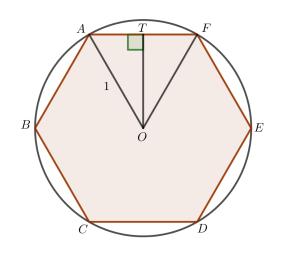
圓面積≈圓內接正六邊形的面積

$$\therefore \pi(1)^2 \approx \frac{3\sqrt{3}}{2}$$

 $\pi \approx 2.59$

不過誤差很大!

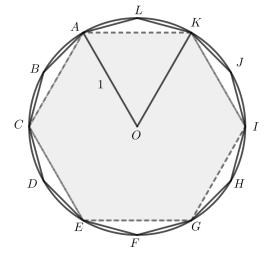
如何更準確估計π的值?



從圓內接正六邊形 ABCDEF 開始,

若要更準確,可繼續計算圓內接正二十四邊形面積.....

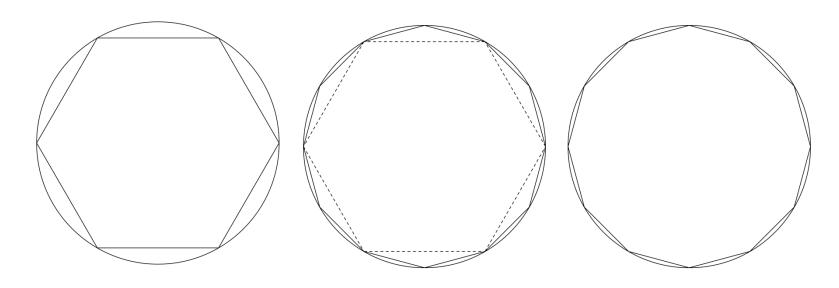
 $6 \rightarrow 12 \rightarrow 24 \rightarrow \dots$



可作圓內接正十二邊形 ABCDEFGHIJKL。 参工作紙

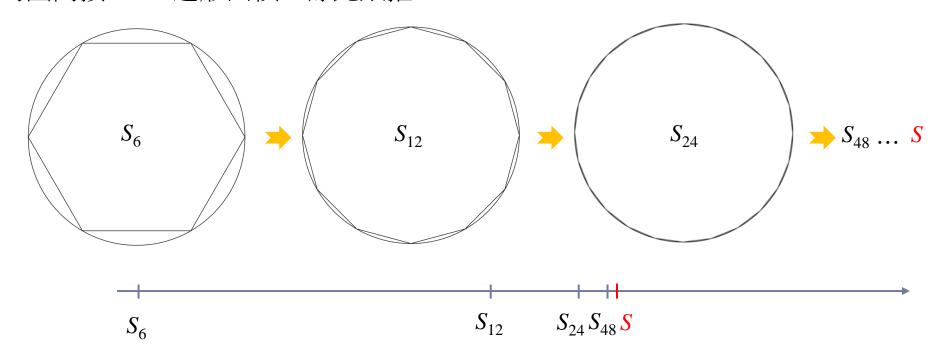
計算圓內接正十二邊形 ABCDEFGHIJKL 的面積,便可更準確估計 π 的值。

▶劉徽「割圓術」



「割之彌細,所失彌少,割之又割,以至於不可割,則與圓周合體而無所失矣。」 劉徽《九章算術》注

考慮半徑為 1的圓,設 S 為圓面積(留意 $S=\pi$), S_6 為圓內接正 G 邊形面積, S_{12} 為圓內接正 G 邊形面積,餘此類推。



 S_{6} S_{12} $S_{24}S_{48}S$

 $S_6 = 2.598...$

 $S_{12} = 3$

 $S_{24} = 3.1058...$

 $S_{48} = 3.1326...$

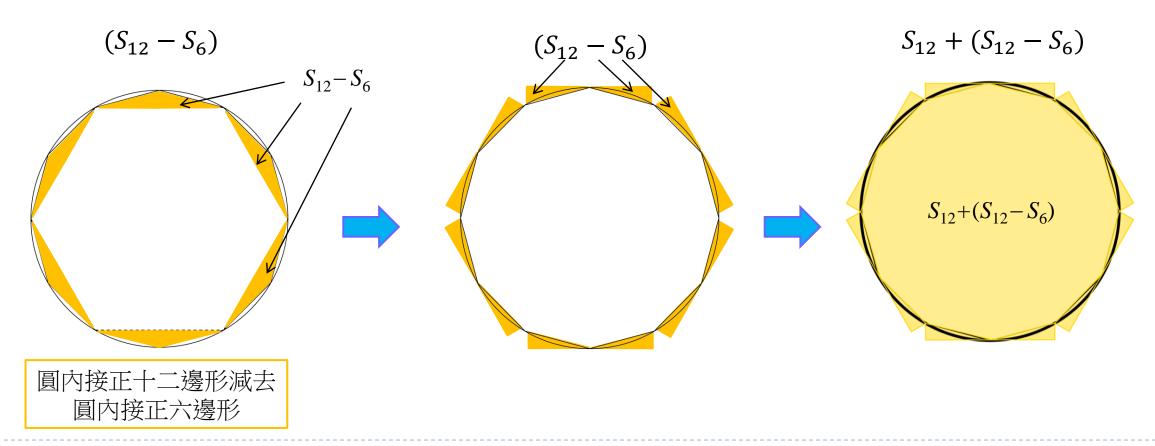
• • • • • • • •

在未曾知道 $\pi = 3.1415...$ 前, 怎知 $S_6 \setminus S_{12} \setminus S_{24} \setminus S_{48}$ 增加下 去,會否增加至3.15...或3.2...?

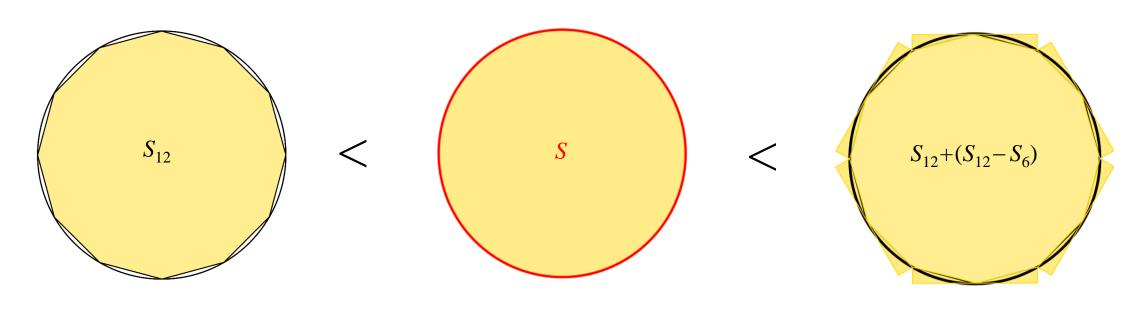
又怎知十分位是否準確? 計算至何時才準確至百分位? 計算至正九十六邊形可以嗎?

劉徽進一步利用差幂來計算π的準確值。

例如,差冪 $(S_{12}-S_6)$ [即下圖橙色小三角形]:

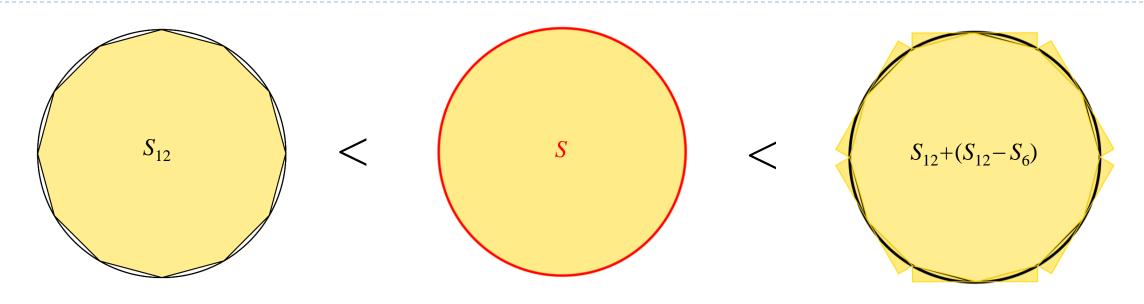


劉徽發現 S_{12} + $(S_{12}-S_6)$ 比圓面積大,即



面積比圓面積小

面積比圓面積大



$$S$$
 在 S_{12} 和 $S_{12} + (S_{12} - S_6)$ 之間,即 $S_{12} < S < S_{12} + (S_{12} - S_6)$

$$S_6 = 2.5981...$$

$$S_{12}=3$$
 (從工作紙)

$$S_{12} + (S_{12} - S_6) = 3 + (3 - 2.5981...) = 3.4019...$$

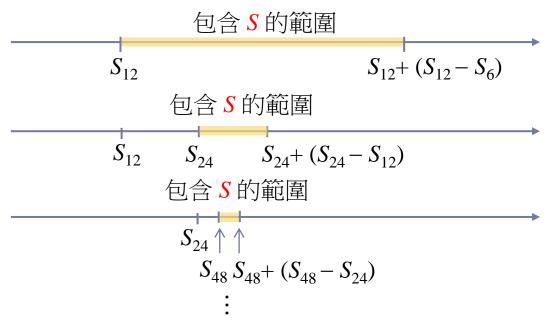
即
$$3 < S < 3.4019...$$
 可以確定 S 的個位是「 3 」。

劉徽進一步考慮 S_{24} 和 S_{12} 的差幂、 S_{48} 和 S_{24} 的差幂等來確定 S 的其他位值。

類似於
$$S_{12} < S < S_{12} + (S_{12} - S_6)$$

可得
$$S_{24} < S < S_{24} + (S_{24} - S_{12})$$

$$S_{48} < S < S_{48} + (S_{48} - S_{24})$$
:



劉徽相信找出 S_6 、 S_{12} 、 S_{24} 、 S_{48} 、 S_{96} 、 S_{192} 、...,就能夠找到 S 的一個合適的近似值,從而計算 π 的近似值。

例如,藉計算 S_{24} 和 S_{48} ,及考慮 $S_{48} < S < S_{48} + (S_{48} - S_{24})$,可得:

到底劉徽如何找出各圓內接正多邊形的面積?

劉徽是利用圓內接正多邊形的邊長來計算 $S_6 imes S_{12} imes S_{24} imes S_{48} imes S_{96} imes S_{192}$ 等的值。 有關計算過程在此省略。

下表列出各圓內接正多邊形的面積及對應的5的取值範圍(準確至10位小數):

面積 S _n	值	
S_6	2.5980762114	
S_{12}	3	
S_{24}	3.1058285412	
S_{48}	3.1326286133	
S_{96}	3.1393502030	
S_{192}	3.1410319509	

邊數 n	正 n 邊形面積	圓面積	正 n 邊形面積 + 差冪
12	3	< <i>S</i> <	3.4019237886
24	3.1058285412	< <i>S</i> <	3.2116570825
48	3.1326286133	< <i>S</i> <	3.1594286853
96	3.1393502030	< <i>S</i> <	3.1460717928
192	3.1410319509	< <i>S</i> <	3.1427136987
$S = \pi (1)^2 = \pi$ 3.1410 $< \pi < 3.1427$			

 $\pi = 3.14$ (準確至 2 位小數)

「劉徽與割圓術」:徽率

實際上,劉徽以圓半徑 1尺=10寸

計算出
$$S_{96} = 313 \frac{584}{625}$$
 方寸 和 $S_{192} = 314 \frac{64}{625}$ 方寸

而 $S = 100\pi$ 方寸

因為
$$S_{192} < S < S_{192} + (S_{192} - S_{96})$$

所以
$$314\frac{64}{625} < 100\pi < 314\frac{64}{625} + \left(314\frac{64}{625} - 313\frac{584}{625}\right)$$

即,
$$314\frac{64}{625}$$
 $< 100\pi < 314\frac{169}{625}$

劉徽捨去分數部分,取 $100\pi = 314$,即 $\pi = 3.14$ (準確至 2 位小數)。 (或 $\frac{157}{50}$,後人稱之為「**徽率**」)

參考資料:

- 1. 梁宗巨(1998)。《數學歷史典故》。台北:九章出版社。
- 2. 李儼、杜石然(2000)。《中國古代數學簡史》。台北:九章出版社。
- 3. 龔昇(2003)。《數學大師講數學:從劉徽割圓談起》。香港:智能教育。
- 4. 袁少明(1992)《中國古代數學史略》。河北科學技術出版社。
- 5. 吳讓泉(1992)《中國數學的知慧之光》。浙江人民出版社。
- 6. 袁小明(1998)。《數學誕生的故事》。台北:九章出版社。
- 7. 洪萬生(2004)。《三國兀裡袖乾坤——劉徽的數學貢獻》。科學發展, 2004年12月,384期。