SUN H

MON -

TUE 二

WED \equiv

先天八卦圖(伏義八卦圖) 與二進制數學

先天八卦圖是從 0 到 7 八個數字,由小到大,順序以二進制的書 寫形式有規則的排列。從數學的角度來說,八卦與現在二進制數學 沒有本質的區別,它所使用的字符是陽爻(一)和陰爻(--),而非阿 拉伯數字"0"和"1"。所以中國可説是最早使用二進制數學的國家。

If $f(x) = x^2 + 13x$, then $f(x-7) = x^2 - px - 42$. p
--

the			
Given $\log_3(4x-2) - \log_3(x+1) = 1$, find <i>x</i> .	Given $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots = \frac{\pi^2}{x}$, find x.	If $\frac{13x+46}{12x^2-11x-15} = \frac{A}{3x-5} - \frac{5}{4x+3}$, find A.	Find the last digit of 2008 ²⁰⁰⁹ .
初十 Given $\frac{n}{0.n} + \sqrt{\frac{n}{0.n}} = x$, find x. 122 復活節	+-On a circular track, A and C are running in the same direction while B is in the opposite direction. If A passes C every 12 minutes, B meets C every 2 minutes and the distance that A running for 12 minutes equals to B running for 15 minutes. The ratio of the speeds between B and C is $x : 11$. Find x. 133 (復活節星期一	$+ = \begin{pmatrix} + = 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	The product of the last digits of $(1^{2009} + 2^{2009} + + 2009^{2009})$ and $(1^{2008} + 2^{2008} + + 2009^{2008})$.
Given $(\sqrt{2} + \sqrt{1})^{-1} + (\sqrt{3} + \sqrt{2})^{-1} + \dots + (\sqrt{400} + \sqrt{399})^{-1} = n$, find <i>n</i> . 19	Given $n^2 = 1 + 3 + 5 + + 39$, find <i>n</i> . 20	If area of the larger sector = 28, then area of the shaded region = ? 21 $\pm \frac{1}{2}$	If A, B, C, D, E represent differen digits, find $A + B + C + D + E$. $5AD$ $C 5 5$ $+DBC$ $\overline{A 5E 5}$ 2
In hoopball, a field goal is worth 2 points and a foul shot is worth 1 point. Suppose a team scored 72 points and made 6 more field goals than foul shots. How many field goals did the team make? 226 初二	If 3, <i>a</i> , <i>b</i> , <i>c</i> , 15 are in <i>AP</i> , then $a + b + c = ?$ 27 $\eth \equiv$	How many non-negative integral solutions for $x + y + z = 6$. 228	葛卷裹袤《古算題》 二丈木長三尺圍,葛生其下纏繞之, 徐徐纏繞七周遍,葛梢卻與木梢齊, 試問先生能算者,葛長多少請君題。 2

Produced by:

Mathematics Education Section EDUCATION BUREAU

Contents from Maths Calendar 2009. Department of Applied Mathematics, The Hong Kong Polytechnic University

應

DEPARTMENT OF APPLIED MATHEMATICS 用 學系 數