WED =

FEBRUARY

SUN H

二月 2009

中文電碼

中文電碼,原本是於電報之中傳送中文信息的方法。它是第一個把漢 字化作電子訊號的編碼表。中文電碼表採用了四位阿拉伯數字作代 母和符號。漢字先按部首,後按筆劃排列。字母和符號放到電碼表的 最尾。如香港身份證,於每位持證人的中文姓名下面,均印有中文電 碼。此外,在很多政府或商業機構的表格中,亦設有填寫中文電碼一 欄,以便輸入電腦。

21220 + 0570 15510 + 5070						
${}_{9}C_{9} - {}_{9}C_{8} + {}_{9}C_{7} - {}_{9}C_{6} + {}_{9}C_{5} - {}_{9}C_{4} + {}_{9}C_{3} - {}_{9}C_{2} + {}_{9}C_{1} = ?$	The smallest prime number x such that $17x + 3$ is also a prime number.	A straight line $y = m$ ($m > 0$) intersects the curve $y = x^2 - 3x - 4$ at $A(\alpha, k)$ and $B(\beta, m)$, find the value of $\alpha + \beta$.	$\frac{\pi}{x} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots, \text{ find } x.$	The unit digit of $1^{2009} \times 3^{2009} \times 5^{2009} \times 7^{2009} \times 9^{2009}$.	If $\frac{{}_{n}P_{r}}{{}_{n}C_{r}} = 720$, find r .	The remainder of $7^{2009} \div 100$.
1 初七	2 初八	3 初九	4 立春	5	6	+
$\sqrt{1 + 7\sqrt{1 + 8\sqrt{1 + 9\sqrt{\dots}}}} = ?$	In the figure, $ABCD$ is a straight line with $AB = BC = CD$. Three circles I, II and III are drawn respectively on AB , AC and AD as diameters. Area of circle II: Area of circle III = 1:4: s , s = ?	If $2x = 3y = 5z$, then $x : y : z = 15 : r : 6, r = ?$	修改自九兒問甲《古算題》 一個公公九個兒,若問生年總不知, 自長排來差三歲,其年二百七歲期, 借問幼兒多少歲,各兒歲數要詳推。	E and F are the mid-points of AB and DC respectively. BF and ED cut AC at P and Q respectively. If the area of $ABCD$ is 48, find the area of the shaded part.	If the polar coordinates of the two points A and B are $(5, 45^{\circ})$ and $(12, 135^{\circ})$ respectively, find the distance between A and B .	A bag contains 2 black balls, 2 green balls and 2 yellow balls. John draws one ball at a time randomly without replacement until a green ball is drawn the probability that he needs at most 4 draws is $\frac{k}{15}$, $k = ?$
Find z if $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{9}{10}$ and $x < y < z$.	1	In the figure, PXQ , QYR and RZP are semicircles and their areas are A_1 cm ² , A_2 cm ² and A_3 cm ² respectively. If $A_1 = 12$ and $A_2 = 5$, $A_3 = ?$	In the figure, AC cuts BD at O . The areas of $\triangle AOB$, $\triangle AOD$ and $\triangle BOC$ are 7 cm ² , 12 cm ² and 10.5 cm ² respectively. Find the area of $\triangle OCD$.	Dividing 404 oranges and 108 apples equally among a group of children left 5 oranges and 3 apples. There are 2 possible numbers of children satisfying this situation. Find the number of oranges each child gets when the larger number of children is taken.	A man marks his goods at a price that will bring him a profit of 25% on the cost price. If he wants to sell his goods to a friend at the cost price, find the percentage discount on the marked price. 20	In the figure, $ABCD$ is a parallelogram and $AE : ED = 1 : 3$. If the area of $\triangle ABE = 3 \text{ cm}^2$. Find the area of the shaded region.
umber of zeros of $\times 2 \times 3 \times \times 99$ ".	世二 輯錄自《九章算術》方程: 今有五羊、四犬、三雞、二兔,直錢 一千四百九十六;四羊、二犬、六雞、三 兔,直錢一千一百七十五;三羊、一犬、七 雞、五兔,直錢九百五十八;二羊、三犬、 五雞、一兔,直錢八百六十一。問雞價幾 何?	The number of arrangements for 5 people sitting in a round circle. $H \equiv$	B C 雨水 $(\sqrt{2} + \sqrt{1})^{-1} + (\sqrt{3} + \sqrt{2})^{-1} + \dots + (\sqrt{n} + \sqrt{n-1})^{-1} = 4,$ find n .	计五 The coefficient of n for $(2n + 1)^{13}$	If a class of children is divided into groups of 5, 2 children will be left over. If the class is divided into groups of 6, 3 children will be left over. What is the smallest number of children the class could have?	B C Given $\log_{72-x} 1936 = 2$, find x .
22	23 #九	24	25	26	27	28

Produced by:

Contents from Maths Calendar 2009. Department of Applied Mathematics, The Hong Kong Polytechnic University

