| 07757 P | 25025 | | | | | ~ 4 = 1 | |---|---|--|--|--|---|---| | SUN H | MON — | TUE 二 | WED Ξ | THU M | FRI 📶 | SAT 六 | | | 過河問
妻過河
假設船
運
華
等
中
東
西 | 題之
題是數學上頗具趣味的題目,有夫
、商人過河、農夫過河等問題。
夫要把一匹狼、一隻羊和一棵白菜
。附帶條件是船夫必須在場,否則
吃白菜、狼就會吃羊;而船夫的船
只能運送一種東西。怎樣才能把所
都運過河呢?這類的數學模型稱為
移模型。 | Find the unit digit of 6" - 5". 香港特別行政區 成立紀念日 初九 | Given a 3-digit number $\overline{PQR} = x^3$ and $P + Q + R = y^3$, find y . | A solid consisting of a cylinder of height h and a hemisphere of radius r . The area of the curved surface of the cylinder is twice that of the hemisphere. Volume of the cylinder: volume of the hemisphere is $k: 1, k=?$ | Given that $(z + 1) \alpha x^3$. When $x = 3$, $z = 53$. When $z = 127$, what is the value of x ? | | Find the maximum value of $-3x^2 + 12x - 7$. | Given \underline{x} is a less-than-10 positive integer, $468 + \overline{xx} + \overline{xx} + \overline{xx} = \overline{xxx}$, $x = ?$ | For any 3-digit prime number \overline{ABC} , find the smallest prime factor of \overline{ABCABC} . | The ratio of the internal base radii of containers P and Q is $1:3$. A and B are two cubes with side lengths in the ratio $1:2$. A and B are put into P and Q respectively. If the rise in the water level in P is 1 cm, the rise in the water level in Q is $\frac{k}{9}$ cm. $k=?$ | A(a, 4), $B(5, 5)$ and $C(1, 6)$ are 3 collinear points. Find a . | In the figure, $AC \parallel DE$, $FG \parallel BC$ and $AD: DF: FB = 1:2:3$. If $BE = \frac{50}{3}$, find FG . | If a, b satisfy $3^{x^2+1} = 9^{11x-30}$, find $\frac{a+b}{2}$. | | If an equilateral triangle of side length k cm consists of exactly 144 equilateral triangles of side lengths 1 cm inside, find k . | 修改自《九章算術》方程
今有麻九斗、麥七斗、菽三斗、答二斗、黍
五斗、直錢一百四十;麻七斗、麥六斗、菽
四斗、答五斗、黍三斗、直錢一百二十八;
麻三斗、麥五斗、菽七斗、答六斗、黍四
斗、直錢一百一十六;麻二斗、麥五斗、菽
三斗、答九斗、黍四斗、直錢一百一十二;
麻一斗、麥三斗、菽二斗、答八斗、黍五
斗、直錢九十五。
問麥、菽及黍各一斗共幾何? | If a and b are distinct real numbers such that $a^2 + 4a + 1 = 0$ and $b^2 + 4b + 1 = 0$, find $a^2 + b^2$. | If $x^2 + y^2 = 285$, $x^2y^2 = 900$, $x > 0$, $y > 0$, $x - y = ?$ | $\sqrt{1+3+5++31} = ?$ | Given $1^3 + 2^3 + + X^3 = 153^2$, find X . | Find the last 2 digits of $7^{123} - 5^{123}$. | | 12 | 15 | 14 | 13 | 16
#M | ↓ #± | 10 #☆ | | Find the maximum value of $12 - 4 \sin\theta - 3\cos 2\theta$. | Find the value of cos ⁻¹ (sin70°). | 轉錄自《九章算術》盈不足
今有共買羊,人出五,不足四十五;人出
七,不足三。問人數幾何? | Given $y^2 = \overline{PP}^2 = \overline{AMA}$,
with $M = 2A = 4P$, find y. | Given $n^2 = 1 + 3 + 5 + + 45$, find n . | If $AC = 27$, $BC = 36$, $AB = 45$ and $AD : DE : EC = 3 : 4 : 2$, find the area of the smallest shaded region. A D 27 | A 5-digit number $\overline{80AB9}$ has the same remainder 2 when it is divided by 13 or 37. Find $(A + B)^2$. | | 19 | 20 | 21 | 22 | 23
大著 | B 36 C 24 初三 | 25 | | $\frac{x}{\begin{vmatrix} 13 & -4 \\ -2 & 3 \end{vmatrix}} = \frac{y}{\begin{vmatrix} -4 & 2 \\ 3 & 5 \end{vmatrix}} = \frac{z}{\begin{vmatrix} 2 & 3 \\ 5 & -2 \end{vmatrix}}.$ If $x = 31t$, $y = -pt$, $z = -19t$, find p . | Given $\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} = 27$. Find x . | Find the coefficient of y^{-4} in the expansion of $(y + y^{-1})^8$. | Find the largest prime factor of 2001. | 修改自百人搬磚《古算題》
百人搬百磚,男子一搬八,婦女一搬三,小
孩三搬一,請問小孩先搬幾塊磚? | If $3 \times a \times b \times c \times 37 = 111 \ 111$, where a , b , c are consecutive prime numbers, find $a + b + c$. | | | 26 | 27 | 28 | 29 | 30 | 31 | JULY
七月 2009 | Produced by: Mathematics Education Section EDUCATION BUREAU Contents from Maths Calendar 2009. Department of Applied Mathematics, The Hong Kong Polytechnic University