SUN 日	MON —	TUE 二	WED 三	THU 四	FRI 五	SAT 六
	有一件工程,若甲單獨完成需6日,乙單獨完成需7日,丙單獨完成需14日。甲和乙一起工作2日後,丙再加入工作,間還需多少日方可以完成此工程。	Simplify $\log \frac{2}{1} + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \log \frac{100}{99}.$	$ABCD$ 為一平行四邊形,其中 $BC = 2AB$, $CE \perp AB$, F 是 AD 的中點。 若 $\triangle DFE = n \triangle AEF$,求 n 。	Given $f(x) = a \sin x + b$ where a , b are constants and $a < 0$. If the minimum value of $f(x)$ is -6 and the maximum value of $f(x) = 2$, find the maximum value of $b \sin^2 x - a \cos^2 x$.	How many values are needed for plotting a box-and-whisker-plot for a given set of data?	Given AB is the diameter and $CD \perp AB$, where $AD = 9$ and $BD = 4$. Find CD .
nd x for the system of equations $x - 5^y = 3$ and $2^{x-3} + 5^{y-2} = 21$.	If α and β are roots of $x^2 + 2x + 2 = 0$, find $\alpha^5 + \beta^5$.	20 balls are put into 2 bags with 10 balls in each bag. The balls in each bag are labeled numbers 1 to 10, all balls in one bag are white and all balls in the other bag are black. If one ball is drawn from each of two bags, the probability that the number labeled on the white ball is greater than that on the black ball is $\frac{k}{20}$, find k .	A circle passes through the points (10, 0), (8, 2), (6, 8). Find its radius.	ABCD is a rectangle. AB = 3p + 4, $AD = 2p + 6$. AE and CF are perpendicular to the diagonal BD. If $p = 10$, find the length of EF (Correct to the nearest integer).	Find the largest area of a rectangle that can be inscribed in the ellipse $9x^2 + 4y^2 = 36$.	若 $x = \sqrt{3 + \sqrt{3}}$ 及 $y = \sqrt{3 - \sqrt{3}}$, 求 $x^2 (1 + y^2) + y^2 + 1$ 。
the coefficient of x^6 in the Taylor's pansion of $(1 + 2x) e^{2x} + (1 - 2x) e^{-2x}$ a , find $\frac{45a}{4}$.	Birthday of Galileo Galilei . Using his own pulse as a timer, Galileo discovered the pendulum isochronisms in 1581. He found that all bodies fall with the same acceleration and declared mechanical laws valid for all observers in uniform motion. He made the first telescopic observations.	Find k if the equations x + 3y + 2 = 2x + 4y - k = x - 2y - 3k = 0 are consistent.	Find the number of digits in $(2^{10})(3^{11})(5^{12})$ by using logarithms.	A point p moves in the $x - y$ plane such that the sum of its distances from the points $(-5, 0)$ and $(5, 0)$ is a constant d . If the locus of p passes through $(-9, 0)$, find d .	Find the smallest positive integer k such that $\sin^2\theta + 24\sin\theta\cos\theta + 11\cos^2\theta \le k$ for all real θ .	在平面直角坐標系上,畫一個以原點為心,半徑長25的圓。 有多少個 x- 坐標和 y- 坐標皆為整數的黑落在該圓上?
14 暦年初一 正月	15 農曆年初二 初二	16 農曆年初三 初三	17 _{初四}	18 _{初五}	19 _{雨水}	2(
$a \cdot b \cdot c$ 滿足以下條件: a + b + c = 3 $a^2 + b^2 + c^2 = 5$ $a^3 + b^3 + c^3 = 10$ $a^4 + b^4 + c^4 \circ$	A and B are supplementary angles. Find $22 \cos^2 (A+B)$.	The median of 20 numbers is 26. If these numbers are arranged in descending order, the 10th number is 29. What is the largest possible value of the 12th number?	ABCD為一正方形。 若PA = 15, PC = 20及PD = 7, 求PB。	Points A , B , C , D , E are on a circle with centre at O . Given $\angle DEO = 75^\circ$, $\angle AOE = 100^\circ$, $\angle ABO = 50^\circ$, $\angle BOC = 20^\circ$ and $\angle ODC = x^\circ$, find x .	The sum of 4 numbers is 120. If these 4 numbers are arranged in ascending order, the mean of the 2 middle numbers is 34. Find the mean of the remaining numbers.	The sum of 2 positive numbers <i>a</i> and <i>b</i> is 6. What is the largest possible value 3 <i>ab</i> ?
21	22 初九	23	24 to the contract of the cont	25	26	2
r $\triangle ABC$, $\angle B = 30^{\circ}$ and the length of e opposite $\angle B$ is 28 units.	黃金矩形與藝術作品					

Find the radius of the circumcircle of the triangle.

其大小則按正方形高度而定,再按正方形對角線的交接點

FEBRUARY 二月 2010

Produced by:

Contents from Maths Calendar 2010. Department of Applied Mathematics, The Hong Kong Polytechnic University

