SUN 日	MON —	TUE 二	wed 三	THU 四	FRI 五	SAT 六
OCT +月 2010	音樂中的週期函數 週期函數揉合現代樂器設計和電腦 許多樂器的製造都是先把週期函數 與這些樂器所發出的最佳聲音圖傳 再加以改進而成。電子音樂的原音 跟週期圖像有著緊密聯繫。	【所產生聲音的圖像, 《作出比較後 [,]			Let $x \oplus y = x + y - xy$, where <i>x</i> , <i>y</i> are real numbers. Find the value of the expression $1 \oplus (0 \oplus 1)$.	If ABD is a semi-circle and OACB is a sector, find the area of shaded region ACBD. $A \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D} \xrightarrow{D}$
Given that <i>m</i> , <i>c</i> are positive integers less than 10. If $m = 2c$ and $\overline{0.mcmc} \dots = \frac{c+4}{c+8}$, find <i>c</i> . 3 $\ddagger \star$	Agent <i>A</i> is deciding whether to become an undercover by flipping a coin three times. He will be an undercover if the number of head obtained is greater. How many coins arrangement are there for <i>A</i> to become an undercover? 4_{tt}	It is given that $4 \cos^4 \theta + 5\sin^2 \theta - 4 = 0$, where $0 < \theta < 2\pi$. If the maximum value of θ is $\frac{m\pi}{3}$, find <i>m</i> . 5	A bag contains <i>d</i> balls of which <i>x</i> are black, $x + 1$ are red and $x + 2$ are white. If the probability of drawing a black ball randomly from the bag is not more than $\frac{1}{6}$, find the value of <i>d</i> .	Given that $(x - 1)^2 + y^2 = 4$, where x and y are real numbers. Find the maximum value of $2x + y^2$.	There are two sequences: Sequence A: 1, 2, 3, 4, and Sequence B: 1, 2, 4, 8, Find the smallest integer <i>n</i> such that $\sum_{k=1}^{n} b_k > 5 \sum_{k=1}^{n} a_k.$	Find the area of the square <i>ABCD</i> , if radius of the circle is $\frac{3}{\sqrt{2}}$.
 找出算式中最下一行方格中數字的和。 2 □ X □ 7 □ □ 5 □ 3 0 □ □ 5 □ □ 5 100 初三 	Given that the difference between two 3-digit natural numbers \overline{xyz} and \overline{zyx} is a positive integer greater than 600. Find the greatest value of $x + z$. 111 初四	Let $A = -1^2 + 2^2 - 3^2 + 4^2 - \dots - 2003^2 + 2004^2$. Find the sum of all the digits of A. 122 $202 + 10^2 $	1到x的整數全部相乘,其積用12來 除。得到的商若是可以用12整除,則 再用12除。連續用12除,直到商不 被12整除。最後的商為25025。求x。 133 初六	Mr. Chan has 8 sons and k daughters. Each of his sons has 8 sons and k daughters. Each of his daughters has k sons and 8 daughters. It is known that the number of his grandsons is one more than the number of his granddaughters and k is a prime number. Find $2k$. 144 初七	一個圓的周長是5.4米,兩隻螞蟻從 一條直徑的兩端同時出發沿圓周相向 爬行,這兩隻螞蟻每秒鐘分別爬行 5.5厘米和3.5厘米。它們每次爬行 1秒、3秒、5秒就掉頭爬行。那麼 兩隻螞蟻第一次相遇的爬行時間在開 始後多少分鐘?(答案準確至整數)	Square PQRS is inscribed in $\triangle ABC$. The areas of $\triangle APQ$, $\triangle PBS$ and $\triangle QRC$ are 4, 4 and 12 respectively. Find the area of the square PQRS. A $P = \frac{A}{S R C} \frac{116}{16}$
Find the first positive integer that can be written as the sum of a positive cube and a perfect square in two different ways; that is, the smallest <i>n</i> such that $x^3 + y^2 = n$ has two different solutions of positive integers <i>x</i> and <i>y</i> . Note that the next such number is 65. 177	Find the smallest integer <i>p</i> such that $\frac{p^2}{12} - 3p + 24$ is a negative integer. 18 18 +-	If α and β are roots of quadratic equation $4x^2 - 10x + 3 = 0$, find $4(\alpha^2 + \beta^2)$. 199 +=	Given that a, b, c are positive integers and $a < b < c = 11$. Find the number of triangles formed with sides equal $a \text{cm}$, b cm and $c cm$. 20 +=	The sector <i>ABC</i> is one quarter of a circle with radius 4 cm and <i>AD</i> is a tangent to sector <i>ABC</i> at point <i>A</i> . Suppose the area of two shaded parts are equal, find the area of trapezium $A \longrightarrow C$ $ABCD$ (Correct to the nearest integer). 21 + \square	Given $C_3^n = 70n$. Find <i>n</i> . 222 + \pm	ABCD is a trapezium, the segments ABand CD are both perpendicular to BC andthe diagonals AC and BD intersect at X.If $AB = 5$ cm, $BC = 12$ cm, $CD = 16$ cmand the area of ΔBXC is $w \text{ cm}^2$, find w (Correct to the nearest integer).BACD 233 R
 一排 6 張椅子上坐 3 個人,每 2 人之 間至少有一張 空椅子, Birthday of Karl Weierstrass. He was a German mathematician who is often cited as the "father of modern analysis". 	Birthday of Évariste Galois. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a long-standing problem. He died from wounds suffered in a duel under shadowy circumstances at the age of twenty. $25_{\pm\Lambda}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	如圖所示,將正方形的每條邊都各自 三等分,其邊上的點與正方形內部的 一點相連結,形成4個四邊形和4個 三角形。若正方形的邊長為12 cm, 四邊形 N, O, P的面積之和為 69 cm ² , 水四邊形 Q 的面 積是多少? 227 =+	Let [x] be the integral part of x. Find $M = \frac{1}{293} \sum_{k=1}^{1024} [\log_2 k]$. 28 $\pm -$	有10張寫著連續整數的卡片。從中挑 出3之倍數的卡片,相加起來是99。 此外,將所有2之倍數相加,和則為 170。求所有卡片中最小的數。 299 +=	Suppose { X_i , $i = 1, 2,, n$ } is a random sample of size n from $f(x) = 2x$; $0 < x < 1$ and zero otherwise. Find n if $E(Y_n = \max \{X_1, X_2,, X_n\}) = \frac{60}{61}$. 30 $\ddagger =$

Produced by:

Mathematics Education Section EDUCATION BUREAU

DEPARTMENT OF APPLIED MATHEMATICS 應用數學系