Heat	(15)	hours)
IIcai		nours)

Topics	Content	Notes for teachers
(a) Temperature, heat and internal energy		
temperature and thermometers	 realise temperature as the degree of hotness of an object interpret temperature as a quantity associated with the average kinetic energy due to the random motion of molecules in a system explain the use of temperature-dependent properties in measuring temperature define and use degree Celsius as a unit of temperature 	 Same treatment as in HKCEE Basic principle of how temperature dependent properties can be used for measuring temperature <i>is required</i> Calibrating a thermometer by plotting a linear graph <i>is required</i> The detailed structure and facts (e.g. working range, suitability) of thermometers <i>are not required</i>
heat and internal energy	 realise that heat is the energy transferred as a result of the temperature difference between two objects describe the effect of mass, temperature and state of matter on the internal energy of a system relate internal energy to the sum of the kinetic energy of random motion and the potential energy of molecules in the system 	• Same treatment as in HKCEE
heat capacity and specific heat capacity	 define heat capacity as C = Q/ΔT and specific heat capacity as c = Q/mΔT determine the specific heat capacity of a substance discuss the practical importance of the high specific heat capacity of water solve problems involving heat capacity and specific heat capacity 	• Same treatment as in HKCEE
(b) Transfer processes		
conduction, convection and radiation	 identify the means of energy transfer in terms of conduction, convection and radiation interpret energy transfer by conduction in terms of molecular motion realise the emission of infra-red radiation by hot objects determine the factors affecting the emission and absorption of radiation 	 Same treatment as in HKCEE Molecular interpretation of convection <i>is not required</i> Factors affecting the rate of conduction <i>are not required</i>

Topics	Content	Notes for teachers
(c) Change of state		
melting and freezing, boiling and condensing	 state the three states of matter determine the melting point and boiling point 	• Same treatment as in HKCEE
latent heat	 realise latent heat as the energy transferred during the change of state without temperature change interpret latent heat in terms of the change of potential energy of the molecules during a change of state define specific latent heat of fusion as left = Q/m define specific latent heat of vaporization as left = Q/m solve problems involving latent heat 	Same treatment as in HKCEE
evaporation	 realise the occurrence of evaporation below boiling point explain the cooling effect of evaporation discuss the factors affecting rate of evaporation explain evaporation in terms of molecular motion 	 Same treatment as in HKCEE Qualitative explanation of evaporation and its cooling effect in terms of molecular motion <i>are required</i> Interpreting the factors affecting the rate of evaporation in terms of molecular motion <i>is not required</i>

Topics	Content	Notes for teachers
(a) Position and		
movement		
position, distance and displacement	 describe the change of position of objects in terms of distance and displacement 	• Combining percentage errors is not required
	 present information on displacement-time graphs for moving objects 	Overnier caliper and micrometer could be used as instruments in practical work
		Mathematics skills involved: Compulsory Part in Math
		• 2. Functions and graphs
		• 9. More about graphs of functions
		• Calculus is not expected
scalars and vectors	distinguish between scalar and vector quantities	Mathematics skills involved:
	• use scalars and vectors to represent physical quantities	Module 2 (Algebra and Calculus) in Math
		• 15. Introduction to vectors
		• Teachers are expected to introduce the necessary basic ideas of vectors
speed and velocity	• define average speed as the distance travelled in a given	• Relative velocity is not required
	period of time and average velocity as the displacement changed in a period of time	Mathematics skills involved:
	 distinguish between instantaneous and average 	Compulsory Part in Math
	speed/velocity	 12. Equations of straight lines and circles
	 describe the motion of objects in terms of speed and 	- 12. Equations of straight miles and encies
	velocity	
	• present information on velocity-time graphs for moving	
	objects	
	• use displacement-time and velocity-time graphs to	
	determine the displacement and velocity of objects	
uniform motion	• interpret the uniform motion of objects using algebraic and	
	graphical methods	
	• solve problems involving displacement, time and velocity	
acceleration	define acceleration as the rate of change of velocity	
	• use velocity-time graphs to determine the acceleration of	
	objects in uniformly accelerated motion	
	 present information on acceleration-time graphs for moving objects 	

Force and Motion (36 hours)

Topics	Content	Notes for teachers
equations of uniformly accelerated motion	• derive equations of uniformly accelerated motion v = u + at $s = \frac{1}{2}(u + v)t$ $s = ut + \frac{1}{2}at^2$	Mathematics skills involved: Compulsory Part in Math • 1. Quadratic equations in one unknown
vertical motion	 v² = u² + 2as solve problems involving objects in uniformly accelerated motion examine the motion of free-falling objects experimentally 	- Dependence of singulations on more size and share of chierts is as (
under gravity	 examine the motion of free-falling objects experimentally and estimate the acceleration due to gravity present graphically information on vertical motions under gravity apply equations of uniformly accelerated motion to solve problems involving objects in vertical motion describe the effect of air resistance on the motion of objects falling under gravity 	• Dependence of air resistance on mass, size and shape of objects <i>is not required</i>
(b) Force and motion		
Newton's First Law of motion	 describe the meaning of inertia and its relationship to mass state Newton's First Law of motion and use it to explain situations in which objects are at rest or in uniform motion understand friction as a force opposing motion/tendency of motion 	• Concepts and formulae of kinetic friction and static friction <i>are not required</i>
addition and resolution of forces	 find the vector sum of coplanar forces graphically and algebraically resolve a force graphically and algebraically into components along two mutually perpendicular directions 	Mathematics skills involved: Compulsory Part in Math • 13. More about trigonometry
Newton's Second Law of motion	 describe the effect of a net force on the speed and/or direction of motion of an object state Newton's Second Law of motion and verify <i>F</i> = <i>ma</i> experimentally use newton as a unit of force use free-body diagrams to show the forces acting on objects determine the net force acting on object(s) apply Newton's Second Law of motion to solve problems involving motion in one dimension 	Solving problems involving two-body or many-body systems <i>is expected</i>
Newton's Third Law of motion	 realise forces acting in pairs state Newton's Third Law of motion and identify action and reaction pair of forces 	

|--|

Topics	Content	Notes for teachers
mass and weight	 distinguish between mass and weight realise the relationship between mass and weight 	
(c) Projectile motion	 describe the shape of the path taken by a projectile launched at an angle of projection understand the independence of horizontal and vertical motions solve problems involving projectile motion 	 Resolving vector quantities into horizontal and vertical components and solving problems by considering the <i>x</i> and <i>y</i> directions separately <i>are required</i> Deriving the equations for the range, time of flight and maximum height <i>is not required</i> Deriving the equation <i>y</i>(<i>x</i>) for the parabolic trajectory <i>is not required</i> Quantitative treatment of air resistance on projectile motion is <i>not required</i>
(d) Work, energy and power		
mechanical work	 interpret mechanical work as a way of energy transfer define mechanical work done W = Fs cosθ solve problems involving mechanical work 	
gravitational potential energy (P.E.)	 state that gravitational potential energy is the energy possessed by an object due to its position under gravity derive <i>P.E. = mgh</i> solve problems involving gravitational potential energy 	
kinetic energy (K.E.)	 state that kinetic energy is the energy possessed by an object due to its motion derive <i>K.E.</i> = ¹/₂ mv² solve problems involving kinetic energy 	
law of conservation of energy in a closed system	 state the law of conservation of energy discuss the inter-conversion of P.E. and K.E. with consideration of energy loss solve problems involving conservation of energy 	 The concepts of energy being stored when spring/elastic cord is extended/compressed <i>are required</i> and that the amount of energy stored increases with the extension/compression <i>are also assumed</i> The equation of <i>elastic P.E.</i> = ½kx² <i>is not required</i> Solving problems involving 2D motions (e.g. projectile motion) <i>is expected</i>
power	• define power as the rate of energy transfer • apply $P = \frac{W}{t}$ to solve problems	• The use of equation $P = Fv$ is expected
(e) Momentum		
linear momentum	• realise momentum as a quantity of motion of an object and define momentum $p = mv$	
change in momentum and net force	 understand that a net force acting on an object for a period of time results a change in momentum interpret force as the rate of change of momentum (Newton's Second Law of motion) 	 "Change in momentum" is used instead of the term "impulse" Interpretation of <i>F</i>-<i>t</i> graph <i>is expected</i>

Topics	Content	Notes for teachers
law of conservation of momentum	 state the law of conservation of momentum and relate it to Newton's Third Law of motion distinguish between elastic and inelastic collisions solve problems involving momentum in one dimension only 	 Deriving the law of conservation of momentum from Newton's laws of motion <i>is expected</i> Mathematical proof of the right-angle fork collision <i>is not required</i> The extension of right-angle fork collision to cases of unequal masses or with K.E. loss <i>is not required</i>

Wave Motion (31 hours)

Topics	Content	Notes for teachers
(a) Nature and properties of waves		
nature of waves	 interpret wave motion in terms of oscillation realise waves as transmitting energy without transferring matter 	• Huygen's principle <i>is not required</i>
wave motion and propagation	 distinguish between transverse and longitudinal waves describe wave motion in terms of waveform, crest, trough, compression, rarefaction, wavefront, phase, displacement, amplitude, period, frequency, wavelength and wave speed present information on displacement-time and displacement-distance graphs for travelling waves determine factors affecting the speed of propagation of waves along stretched strings or springs apply f = 1 / T and v = f λ to solve problems 	 Direction of motion of medium particles in displacement-distance graphs <i>is assumed</i> Predict the direction of motion of wave, time lags and time leads in displacement-time and displacement-distance graph Study phase difference between two sinusoidal waves in simple cases (in-phase and anti-phase) only Study displacement-time / displacement-position graph of transverse and longitudinal waves
reflection and refraction	 realise the reflection of waves at a plane barrier/ reflector/ surface realise the refraction of waves across a plane boundary examine the change in wave speeds during refraction and define refractive index in terms of wave speeds draw wavefront diagrams to show reflection and refraction 	 Frequency measurement by stroboscope <i>is not required</i> Phase difference between two arbitrary wave particles <i>is not required</i> © Ripple tank could be used to demonstrate wave motion and wave properties. © Video Camera and HDMVA could be used to analyse wave motion, and measure wavelength and speed
diffraction and interference	 describe the diffraction of waves through a narrow gap and around a corner examine the effect of the width of slit on the degree of diffraction describe the superposition of two pulses realise the interference of waves distinguish between constructive and destructive interferences examine the interference of waves from two coherent sources determine the conditions for constructive and destructive interferences 	 Concept of phase / path difference is assumed in double slits interference Qualitative treatment <i>only</i> for diffraction of wave Problem on interference plus diffraction <i>is not required</i> Conversion between path difference and phase difference is required for inphase and anti-phase interference only Mathematical treatment of superposition <i>is not required</i> Superposition of waves could be demonstrated on a long slinky

Topics	Content	Notes for teachers
	draw wavefront diagrams to show diffraction and interference	
(b) Light		
light in electromagnetic spectrum	 state that the speed of light and electromagnetic waves in a vacuum is 3.0 ×10⁸ m s⁻¹ state the range of wavelengths for visible light state the relative positions of visible light and other parts of the electromagnetic spectrum 	
reflection of light	 state the laws of reflection construct images formed by a plane mirror graphically 	
refraction of light	 examine the laws of refraction sketch the path of a ray refracted at a boundary realize n = sin i / sin r as the refractive index of a medium solve problems involving refraction at a boundary 	 Refraction by a prism <i>is assumed</i> Dispersion of white light through a prism is assumed from Science (S1-3) Curriculum Note that refractive index of light of different frequency (colour) is different Solve problem related to the refractive index of different frequency of light <i>is required</i> General Snell's law <i>is assumed</i> Mathematics skills involved: Compulsory Part in Math 13. More about Trigonometry
total internal reflection	 examine the conditions for total internal reflection solve problems involving total internal reflection at a boundary 	• Critical angle <i>is assumed</i>
formation of images by lenses	 construct images formed by converging and diverging lenses graphically distinguish between real and virtual images 	 Compound lens system, such as telescope and microscope, <i>is not required</i> Eye defects <i>are not required</i> Using graphical methods to solve lens problems <i>is assumed</i>
wave nature of light	 point out light as an example of transverse wave realise diffraction and interference as evidences for the wave nature of light examine the interference patterns in the Young's double slit experiment examine the interference patterns in the plane transmission grating 	 Air wedge / soap film / adding a thin film to Young's double slits setting / immersing the set-up in water <i>are not required</i> Only principal maxima for Young's double slit experiment <i>is required</i> Interference pattern (fringes) of light <i>is required</i> Spectrometer <i>is not required</i>

Topics	Content	Notes for teachers
(c) Sound		
wave nature of sound	 realise sound as an example of longitudinal waves realise that sound can exhibit reflection, refraction, diffraction and interference realise the need for a medium for sound transmission compare the general properties of sound waves and those of light waves 	 Interference pattern (change of loudness) in sound <i>is assumed</i> Order of magnitude of speed of sound and light <i>is expected</i> Phase method and stationary wave method to measure speed of sound <i>are not required</i> © Pulse echo method could be used to estimate the speed of sound
audible frequency range	 determine the audible frequency range examine the existence of ultrasound beyond the audible frequency range 	
musical notes	 compare musical notes using pitch, loudness and quality relate frequency and amplitude with the pitch and loudness of a note respectively 	 Harmonics and overtones <i>are not required</i> Quality of sound in terms of different shapes of waveform only
noise	 represent sound intensity level using the unit decibel discuss the effects of noise pollution and the importance of acoustic protection 	 Typical noise level in daily life <i>is required</i> Noise pollution (very briefly) <i>is required</i> The definition of sound intensity level <i>is not required</i> Relationship between intensity level and amplitude is not required Curves of equal loudness are not required Qualitative treatment of sound intensity level only

Topics	Content	Notes for Teachers
(a) Electrostatics		
electric charges	 examine the evidence for two kinds of charges in nature realise the attraction and repulsion between charges interpret charging in terms of electron transfer 	 Same treatment as in HKCEE Concepts of conductor and insulator <i>are required</i> Charging by sharing and induction <i>is required</i> Gold-leaf electroscope could be used as an instrument to demonstrate the presence of electric charges.
electric field	 describe the electric field around a point charge and between parallel charged plates represent an electric field using field lines 	 Same treatment as in HKCEE Point action <i>is not required</i> Charge distributions on a metal sphere and parallel plates <i>are required</i>
(b) Circuits and domestic electricity		
electric current	 define electric current as the rate of flow of electric charges state the convention for the direction of electric current 	• Same treatment as in HKCEE
electrical energy and electromotive force	 describe the energy transformations in electric circuits define the potential difference (p.d.) between two points in a circuit as the electric potential energy converted to other forms per unit charge passing between the points outside the source define the electromotive force (e.m.f.) of a source as the energy imparted by the source per unit charge passing through it 	• Same treatment as in HKCEE
resistance	 define resistance R = V/I describe the variation of current with applied p.d. in metal wires, electrolytes, filament lamps and diodes realise Ohm's law as a special case of resistance behaviour determine the factors affecting the resistance of a wire and define its resistivity ρ = RA/I describe the effect of temperature on resistance of metals and semiconductors 	② Demonstration of the variation of current with applied p.d. in various conductors and circuit elements (metals, a filament bulb, electrolyte, thermistors and diodes) is encouraged

Electricity and Magnetism (32 hours)

Topics	Content	Notes for Teachers
series and parallel circuits	 compare series and parallel circuits in terms of p.d. across the components of each circuit and the current through them derive the resistance combinations in series and parallel R = R₁ + R₂ + for resistors connected in series 	 Quantitative problems involving simple parallel and series circuits <i>are required</i> The concept of the conservation of charge and energy of a closed circuit <i>is required</i>
simple circuits	 measure <i>I</i>, <i>V</i> and <i>R</i> in simple circuits assign the electrical potential of any earthed points as zero compare the e.m.f. of a source and the terminal voltage across the source experimentally and relate the difference to the internal resistance of the source explain the effects of resistance of ammeters and voltmeters on measurements solve problems involving simple circuits 	 The structure of ammeter and voltmeter, and operation principles are <i>not required</i> Loading effect of ammeter and voltmeter on measurement <i>is required</i> Concept of potential divider <i>is required</i> Problems on converting a moving-coil meter by using a shunt or a multiplier <i>are not required</i> Concept of internal resistance of a power supply (e.g. battery) <i>is required</i> Digital multimeter could be used to measure current (A), voltage (V) and resistance (Ω)
electrical power	 examine the heating effect when a current passes through a conductor apply <i>P</i> = <i>VI</i> to solve problems 	 Same treatment as in HKCEE Calculating the power rating and maximum possible current of an appliance is required Applying V = IR and P = VI to solve problems is required
domestic electricity	 determine the power rating of electrical appliances use kilowatt-hour (kWh) as a unit of electrical energy calculate the costs of running various electrical appliances understand household wiring and discuss safety aspects of domestic electricity determine the operating current for electrical appliances discuss the choice of power cables and fuses for electrical appliances based on the power rating 	 Same treatment as in HKCEE Understanding of household wiring and discussing safety aspects (e.g. live / neutral / earth wires) <i>are required</i> Function of earth wire to prevent electric shock <i>is required</i> The use of fuse and circuit breaker as a safety device <i>is required</i>, but detailed structure of them <i>is not required</i> Ring circuit in domestic electricity <i>is required</i>
(c) Electromagnetism magnetic force and magnetic field	 realise the attraction and repulsion between magnetic poles examine the magnetic field in the region around a magnet 	 Plotting compass, hall probe, current balance and search coil could be used to examine magnetic field

Topics	Content	Notes for Teachers
	 describe the behaviour of a compass in a magnetic field represent magnetic field using field lines 	
magnetic effect of electric current	 realise the existence of a magnetic field due to moving charges or electric currents examine the magnetic field patterns associated with currents through a long straight wire, a circular coil and a long solenoid examine the factors affecting the strength of an electromagnet 	
current-carrying conductor in magnetic field	 examine the existence of a force on a current-carrying conductor in a magnetic field and determine the relative directions of force, field and current determine the factors affecting the force on a straight current-carrying wire in a magnetic field describe the structure of a simple d.c. motor and how it works 	 <i>Qualitative treatment</i> of the force between currents in long straight parallel conductors <i>is required</i> Principles of design / structure and operation of a moving-coil galvanometer are <i>not required</i> Relative directions of force, field and current <i>is required</i>
electromagnetic induction	 examine induced e.m.f. resulting from a moving conductor in a steady magnetic field or a stationary conductor in a changing magnetic field apply Lenz's law to determine the direction of induced e.m.f./current describe the structures of simple d.c. and a.c. generators and how they work discuss the occurrence and practical uses of eddy currents 	 Using CRO as a meter / detector in practical work is encouraged. The detailed structure of CRO <i>is not required</i> Using induction cooking as an example of practical uses of eddy currents is encouraged
transformer	 describe the structure of a simple transformer and how it works relate the voltage ratio to turn ratio by	 Same treatment as in HKCEE Ohmic loss and eddy current loss are <i>required</i>
high voltage transmission of electrical energy	 discuss the advantages of transmission of electrical energy with a.c. at high voltages describe various stages of stepping up and down of the voltage in a grid system for power transmission 	• Same treatment as in HKCEE