B ERKAT:
Wis 24 2 H YE
FATERFAS
Bk (Frg)

Y T
6 8 4y 45

o WIESTEME 7

April 21, 2016. 2:00 p.m. - 5:00 p.m.

CDI - EDB

g
,%/%-
L
# R @R -




B FE Y IR G Fo 3

. 3 E ] EX T
¥ 2 RRAORE? &4
BFE? e BT FER
B RA2?
B TIE Rk X o
B & WAk # % %%

FHERBHZA
mathsiu@hku.hk

2015.05.09



B EREIL A ABEFE - IBEmMmPY

I8 B TE B IR . RS £sq
EEREEAEAE—E JJ‘“"E,,\ EREL
NESHGE - A RS EEAVERE -
B4R A EmiaE2E

R E BRI - B Bl EREEEESM
RYSEZSSRIEEN S - FRILFT BO? (EERISERE?
R E RS % - ) e B IE Y B AR 43 B 2
SGREYIE FERZ S E i ?

BIFERD -

REESIEN R e g i o :
BPGSHBEWE WB oo ma
*_T&F@J%Q :I:;?Junﬁtq:@ Bt Z-"]REgI\E/J X ;ﬁ
REBIEDFRIEEMAE ] ~ ~

ERVE(E



Y)IE Sir : HEEHS

ZRAMG  HERS
EHEARAGHTE -

12 Miss ; # B diye
G RA Mt R4

& % & A B9 45]F o
EafESMEtmeE ?

=418 ?
SUEA =438 ?



Suppose the temperature
on a rectangular slab of
metal is given by

T(x,y) =k (x? + y?)
where k is a constant,
What is T(r,0) ?

a physicist’s answer:
T(r,0)=kr?
a mathematician’s answer :

T(r,0)=k (rz + 62)

Vector Calculus Bridge Project
Tevian Dray and Corinne Manogue

Oregon State University
http://math.oregonstate.edu/bridge/

767

787

Cos (17/4)
=0.7071067...

777

Boeing Airplanes
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M. K. Siu, “Zhi yi xing nan (knowing is easy and doing is
difficult)” or vice versa? ----- A Chinese mathematician’s
observation on HPM (History and Pedagogy of
Mathematics) activities, in The First Sourcebook on Asian
Research in Mathematics Education: China, Korea,

Singapore, Japan, Malaysia and India, (Eds.) B. Sriraman, J.

Cai, K. Lee, L. Fan, Y. Shimuzu, C. Lim, & K. Subramaniam,
Information Age Publishing, 2015 [Chinese translation by
F.K. Siu]
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Albert Einstein, Leopold
Infeld, The Evolution of
Physics : The Growth of
Ideas from Early Concepts
to Relativity and Quanta
(1938)



Imagination

Disciplined and
Critical Thinkin

precision in
mathematics as
well as in words)

“LL/ Qi And Shu: A Chapter II

Infodudion o Sciene and Cuiligation

in China” The Concepts of Yinf& and Yang%
by Ho ng Yoke and Wuxing B.47

(19%5)

Qi can exist in two different states. It can be at rest or in motion; and it can
contract or expand, giving rise to the two states, yin and yang. The two words
yin and yang originated from the ideas of darkness and brightness. Yin conveys
the idea of coldness, clouds, rain, anything feminine, what is inside and dark, the
shady part of a mountain or a valley, and so on; while yang conveys the opposite
idea of warmth, a clear sky, sunshine, anything masculine, what is outside and
bright, the sunny part of a mountain or a valley, and so on.!? Yijing (Book of
Changes) says: ‘One yin and one yang; that is the Dao. (yi yin yi yang zhi wei
dao —fr—My2 3K )'14, meaning that there are only two components of gi
operating in nature, one yin and one yang, each of which dominating over the
other successively in a wave-like motion. This can be best illustrated by the
Taijity R4 diagram (Fig. 4). Half of the diagram is yin and the other half is
yang. If we imagine the figure of the Taijitu rotating about its centre we can see
how yin and yang take over from each other successively in a wave-like action.
Hence, yin and yang are both opposite and complemcntary to each other.!5

Fig. 4 Taijitu.

BSee Needham, vol. 2, especially section 13 ¢, p. 273 ff.

" See Yijing xici shang %% &} k., p. 3b.

1 The taijitt diagram is not as ancient as its name implies. It is similar to that found in some
Taoist texts. See Feng Yulan, pp. 820-4.
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Heraclitus
(c.544-483 B.C.)

Empedocles

(c.490-430 B.C.) Plato

(c.427-347 B.C.)

Aristotle
(c.384-322B,C.)

(c.625-547 B.C.)

Circle-Triangle-Square Courtyard,
Kenninji Temple (z&4=3),
Kyoto, Japan .



Empedocles (5t century B.C.)

Four Elements
Plato: Timaeus
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Johannes Kepler,
Mysterium Cosmographicum
(1596)

Polyhedral Saturn------- Sphere

Hypotesis Cube .
(1596) Jupiter ------ -Sphere

Tetrahedron @

Mars -====-=--=Sphere
Dodecahedron ‘

Icosahedron @

Venus - ------—-Sphere
Octahedron ’
Mercury------Sphere

h ‘
ﬁ g;::" Johannes Kepler,
) we Astronomia Nova (1609),

°— ®"  Harmonices Mundi (1619)
Planetary
Chord (1599)




Aphorisms [Book One] LXXXII

There remains simple
experience which, if taken
as it comes, is called
accident; if sought for,
experiment. ..... But the
true method of experience,
on the contrary, first lights
the candie, and then by
means of the candle shows
the way; commencing as it
does with experience
duly ordered and =
digested, not bungling
or erratic, and from it
educing axioms, and
from established
axioms again new
experiments; .....

FRANC BACONIS
DE VERULAMIO
summi. {nglia
CELLAR

Organum, 1620

Aphorisms [Book One] XCV

Those who have handiled
sciences have been either
men of experiment or men of
dogmas. The men of
experiment are like the ant,
they only collect and use;
the reasoners resemble
spiders, who make cobwebs
out of their own substance.
But the hee takes a middile
course; it gathers its
material from the
flowers of the garden
and of the field, but
transforms and
digests it by a power pBEug
of its own. ..... & wp

F. Bacon, Novum
Organum, 1620

b
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“ Philosophy is written in this grand
book_, the universe, which stands
continually open to our gaze. But the
book_ cannot be understood unless one
first learns to comprehend the language
and reads the letters in which it is
composed . It is written in the language
of mathematics , and its characters are
triangles, circles, and other geometric
figures without which it is humanly
impossible to understand a single word

of it; without these, one wanders about
in a dark [abyrinth.”

Il Saggiatore (The Assayer)
Letter to the lllustrious and

a Very Reverend Don Virginio

i
w ! Cesarini from Galileo Galilei
(1623)



(1564-1642)

HOW (MUCH)
rather than WHY?

[a quantitative rather
than a qualitative
description]

DISCOURS

DE LA METHODE

Pour bien conduire fa raifon,& cherchet
la verit¢ dans les(ciences.

FLus

LA DIOPTRIQVE.

LES METEORES.
ET

LA GEOMETRIE.
Qi font des effass de cete MeTHODE.

A Leybpe
De ITmprimeriecde [AN MatrE.
e fa To ¢ gxxwin
Auec Priuilege.

René Descartes
DISCOURSE ON THE
METHOD PROPERLY
GUIDING THE REASON IN
THE SEARCH OF TRUTH

IN THE SCIENCES (1637)

Cogits, engo sum
(I think, therefore
1am)

PR WEE ©

Unification of all sciences by reason

Method: (a) accept only what is so clear in one’s
mind as to exclude any doubt

(b) divide difficulties into smaller ones
(c) reason from simple to complex
(d) check that nothing is omitted

CARTESIANISM leading to
WORLD MATHEMATIZATION



Aristotle (4t century B.C.)

Observation Laws Explanation
& & &
Experiment [ Theories [®| Prediction
Induction deduction
Baconian View (1620) Medieval
Novum Organum Scholasticism
(New Method)

(12t to 15t centuries)
(17t century)

Observation Laws Explanation
& & &
Experiment [ Theories | Prediction

€

Galileo Galilei

Dialogo dei massimi sistemi

del mondo (Dialogue Concerning
the Two Chief World Systems), 1632
Discorsi e dimonstrazioni
matematiche intorno a

due nuove scienze

(Discourse and Mathematical
Demonstrations Concerning

Two New Sciences), 1638



Schema huius pramiffe diuifionis Sphararum.

Aristotle’s physical world view
(4™ century B.C.)

Matter: the four elements
(Empedocles, 5t century B.C.
Plato, 5th/4th centuries B.C.)

Motion: natural motions
violent motions

COSIIlOlOgy in ancient Greece Phenomena in heaven of a distinct nature
(2-sphere COSIIIOS) from phenomena on earth.

Source: Petrus Apianus, Cosmographia (1524)



Galileo Galilei, Discourse and
Mathematical Demonstration
Concerning Two New Sciences (1638)

Salviati: If then we take two bodies whose
natural speeds are different, it is clear that
on uniting the two, the more rapid one
will be partly retarded by the slower, and
the slower will be somewhat hastened by
the swifter. Do you not agree with me in

Salviati: But, even without further

experiment, it is possible to prove clearly, & &
p ' o \)Q &

by means of a short and conclusive © .0{\‘(‘

argument, that a heavier bodX does not Q;&Q

move more rapidly than a lighter one
provided both bodies are of the same
material and in short such as those
mentioned by Aristotle. But tell me,
Simplicio, whether you admit that each
falling body acquires a definite speed
fixed by nature, a velocity which cannot
be increased or diminished except by the
use of force or resistance.

Simplicio: There can be no doubt but that
one and the same body moving in a single
medium has a fixed velocity which is
determined by nature and which cannot
be increased except by the addition of
momentum or diminished except by some
resistance which retards it.

thisopinion? @ e @e
| vy o4

. vV ¥ \Dwey
Simplicio: You are unquestionably right.

Salviati: But if this is true, and if a large
stone moves with a speed of, say, eight
while a smaller moves with a speed of
four, then when they are united, the
system will move with a speed less than
eight; but the two stones when tied
together make a stone larger than that
which before moved with a speed of eight.
Hence the heavier body moves with less
speed than the lighter; an effect which is
contrary to your supposition. ... @ @e

vl

Is this a truly Ll
mathematical explanation of a

physical phenomenon ?



m,e em, F =m;a inertial mass
l l F = GmygM/R? gravitational mass
m GM
a’ a a = ( Q)
m; R?2

For m and m/’, the resulting a and a’ are the same,

m m
so —2 — f
my; m;
Any deeper

ravitational mass reason

- : > ,

Conclusion: - - — constant/) Pehind?

nertial mass 2
0 0’)

(Force) = (inertial mass) X (acceleration)

(Force) = (gravitational mass) X (intensity of the
gravitational field)

If gravitational mass is to be identified
with inertial mass, then acceleration
is to be identified with intensity of the
gravitation. There is a reference system
in which the intensity of the gravitation
vanishes (locally)!

m,e em, F =m;a inertial mass
l l F = GmygM/R? gravitational mass
m GM
a’ a a = ( Q)
m; R?2

For m and m/, the resulting a and a’ are the same,

’

m ™m

SO g = f .
m; mi

This led to the
Theory of General

Relativity.




Laws of Falling Bodies (in history)

T;,t;% Sﬂ:tj

S s‘..t.-.z .-;-l*
lt=T S3 Experiment with a pendulum when the
v"f=V itﬁ string strikes a nail

Albert of Saxony (1316-1390) VS

Nicole Oresme (1320-1382) Vel

Experirﬁent with an inclined plane
thought experiment

Leonardo da Vinci (1452-1519) S1=5%-5_Si—...
1 2 3 4

Galileo Galilei (1564-1642) O Og Byl . \
1 3 5 7 : e

. f :oc Sl “Furthermore we may remark that any Law of
b —— e velocity once imparted to a moving Inertia
R body will 6e rigidFy maintained as long
" lec as the external causes of acceleration or
2fe retardation are removed, a condition
. 25e which is found only on horizontal planes. Newton's

[...]3t follows that motion along a horizontal  First Law
plane is perpetual [...]” Galileo Galilei  of Motion



Ancient Greek astronomy

Eudoxus, Plato, Aristotle, Hipparchus (4" century to 2™ century B.C.)
[ Heraclides, Aristarchus (4™ century to 3* century B.C. ) Rg%ﬂ\*hc

Claudjus Pfolemy (c. 100-165)

Llmsgseh _
weediic| The earth is fixed and is at the centre of the
sysfew | yniverse. Other [observable] — planets
[including the_sun] move around the earth

with constant along circular paths.

Problems: (1) differentlengths of seasons

| ecliptic
= projeckion on

a!la.shal sphare
of Sixed stars

(2) retrograde motion of planets
Q,Picydn_ degmm‘.l}

Grltre
EARTH

msgrar co | bR

Nicolas Copernlcus (1473-1543)
De nevolutionibus onbium coelestlium (1543)

(On the Revolutions of the Heavenly Spheres)



Tycho Brahe §

(1546-1601)

Tycho Brahe

working in his &

observatory
at Uraniborg,
Denmark.

Johannes Kepler

(1571 - 1630)

Arthur Koestler, The Sleepwalkers :
A History of Man’s Changing Vision
of the Universe (1959)

Introduction by Herbert Butterfield

“No field of thought can be properly
laid out by men who are merely
measuring with a ruler. Sections of
history are liable to be transformed —
or, even where not transformed,
greatly vivified — by an imagination
that comes, sweeping like a
searchlight, from outside the
historical profession itself.”

Herbert Butterfield o
(1900-1979) ' Thﬂ

Slgpwalkers

AHISTORY OF MANS CHANGING

VISION OF THE-UNIVERSE

Arthur -

Arthur Koestler :
(1905-1983) KOGSHGP;




Arthur Koestler, The Sleepwalkers :
A History of Man’s Changing Vision
of the Universe (1959)

“The progress of Science is
generally regarded as a kind
of clean, rational advance
along a straight ascending
line; in fact, it has followed a
zig-zag course, at times
almost more bewildering
than the evolution of

political thought.” m
;

Slgpwalers

AHISTORY OF MANS CHANGING

VISION OF THE-UNIVERSE

Arthur -
Koegtler -

5 Arthur Koestler
(1905-1983)

Arthur Koestler, The Sleepwalkers :
A History of Man’s Changing Vision
of the Universe (1959)

“The history of cosmic theories,
in particular, may without
exaggeration be called a history
of collective obsessions and
controlled schizophrenias, and
the manner in which some of
the most important individual
discoveries were arrived at
reminds one more of a
sleepwalker’s .
performance than - The
an electronic SIeepwalker's
brain’s.” (e b
Arthur -
Koestler -

5 Arthur Koestler
(1905-1983)
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PR RS TER T I A. 151
Tam poliquam femel hujusrei pericalum fecimus, audacia fubvecti
porro libertores cllein hoc campo incipicmus. Nam conquiram eriavel
quorcunque locavifa Mar 1s, Flaneta femper codem eccentrici loco
verlanee: 8 exiis Jege wiangnlorum inguiram totidem punctorum epi-
cyclivel orbis annui diftantias a puncto wqualitatis motus. Ac cumex
aribus punctis circulus deferibacur, ex coms igicur hujusmodi obferva-
tionibus ficumcirculi, cjusque augm, qumf prius ex praluppofito u-
furpaveram, & cecentricitatem a punctowqualitans inquiram. Quod
fiquarcaoblcrvatio accedet, ea ericioco probatienis.
Primva tempus clio anno mpxex D.v Martii vefperi H. vix
M. x eoquod tunc & laritudine pene carvit,ne quisimpertinenti fulpi-
cioncob hujus implicaticnemin percipienda demonitratione impedia-
wr. Refpondentmomenta hae, quibus o ad idem fixarum punérum.
redic: A.moxcrt DoxxrJan. HoviM.xer: A.vop xemD. vin Dec,
Hvi. M. x1t: A moxcy Doxxvr O&ob. H.v Mixwiv. Eftg; longitudo
Martis primo temporeex
Tycuonis reltitutione,
1. 4.38. 50 lequentibus
temporib. totics per i. 3¢
auctior. Hicenim cltmo-
ws praceflionis congre-
ens tempori periodico u-
niusrefticutionisMar t1s
Cumg; T}(cgo apogu-
um ponarinz} -.'-'st,‘?:qua-
tio cjuscrit 11, 14.55: pro-
prerea l6gitudo coxqua-
T22NN0 M DXC L.I§.§3. 45+
Eodem vero tempore,
& commuratio {cu diffe-
rentiamediimotusSoLis
amedio Martis colligitur
10.18.19.5 6 :cogquataleu
differentia inter medium
SoLis & MaRTIs coxqua-
tum cccentricum19.7.5 5.

Privyv v hacin forma
CorernicanAuclimpli-
ciori ad fenfum propone-

Sit o punctum equa-
litatis circuitus terre , qisi
S putctur efSe circulus Sy ext
a deferiptus : €5 fit Sol in
partesfs,ut af3lincaspori

Car.
XX1v,

Johannes Kepler (1571-1630)

Astronomia Nova, 1609

Kepler’s “War” with Mars (from 1600 to 1606)

cirele to oval: “The conclusion is quite simply that the
planet’s path is not a circle - it curves inward on both
sides and outward again at opposite ends. Such a
curve is called an oval. The orbit is not a circle, but an
oval figure.”

oval to ellipse: “The truth of Nature, which I had
rejected and chased away, returned by stealth through
the backdoor, disguising itself to be accepted. That is
to say, I laid [the original equation] aside, and fell back
on ellipses, believing that this was a quite different
hypothesis, whereas the two, as I shall prove in the
next chapter, are one and the same. .... Ah, what a
foolish bird I have been!”

Kepler’s Laws of Planetary Motion

1. Each planet moves in an
elliptical orbit with the sun
at one focus. (160%)

. A given planet sweeps out
equal areas in equal times. (1603)

3. The square of the period of \

revolution of a given planet is

proportional to the cube of its

average distance from the

3
sun [the semimajor axis of its T?= ka
elliptical orbit.] (1618)




Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy)
by Isaac Newton, 1687.

S 1544C NEFTON (b2 Sueadc NEWTON i 3
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LAW I

Every body continues in its stuate of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed upon it.

ROJECTILES continue in ther motions, so far as they are not retarded
by the resistance of the air, or impelled downwards by the force of
gravity. A top, whose parts by their cohesion are continually drawn

aside from rectilinear motions, docs not cease its rotation, otherwise than
as it is retarded by the air. The greater bodies of the planets and comets,
meeting with less resistance in freer spaces, preserve their motions both
progressive and circular for a much longer time.

LAW II

The change of motion is proportional to the motive force impressed; and
s made in the direction of the right line in which that force is impressed.

If any force generates a motion, a double force will generate double the
motion, a triple force triple the motion, whether that force be impressed
altogether and at once, or gradually and successively. And this motion
(being always directed the same way with the generating force), if the
body moved before, is added to or subtracted from the former motion,

according as they directly conspire with or are directly contrary to each
ather; or obliquely joined, when they are oblique, so as to produce a new
motion compounded from the determination of both.

LAW I1I
To every action there is wlways opposed an equal reaction: or, the mutual
actions of twn bodies upon eack other are always equal, and directed to
‘0/””"'”1”1.“.

Whatever draws or presses another is as much deawn or pressed by that

ather. If you press a stone with your finger, the finger is also pressed by the

& NICARAGUA

TEVTTTYTeY

0 FORMULAS MATEMATICAS QUE CAMBIARON LA FAZ DE LA TIERRA

Isaac Néwton
(1642-1727)

Newton’s Law of Universal Gravitation
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The Pythagoreans (c. 6™
century B.C.) discovered:
* sound caused by a plucked

string depends upon the

length of the string
* harmonious sounds giver
off by strings of lengths i
ratios of whole numbers to
each other

Richard Phillips
Feynman
(1918-1988)

RIGHARD FEYNMAN Bhe®obad -
Y (A singly emerging sound is
”‘<W<’< called sheng. An assorted

comparative sound is call yin.)
{ % 32 ) (Historial Records)
(1* century B.C.) .

David L. Goodstein and Judith R. Goodstein

‘Feyaman was a brilliant thinker and one of the finest scientists ever’
The Times

FHEUF °© F4TLE °

DaVid L- GOOdStEin, Judith R- (The sound of rapid vibration
Goodstein, Feynman’s Lost Lecture: o ik e e
. slow vibration has a low
The Motion of Planets Around the pitch.) -
- { % F )(Book of Master Guan
Sun, Vintage Books, 1997. (™ century B.C)
. . Trom, the tomb of Marguis Yi of Zeng
(This is a reconstructed account of a (BMZ) St confiry B.C.

lecture given by Richard Feynman on
March 13, 1964.)



Vibrating String Problem

Find the motion of a tense string fixed at two ends when
it is made to vibrate.

® Jeanle Rond d’Alembert (1747)

i’;‘.:az &

ot o
u(0,0)=u(L,t)=0
u=f(x—at)+g(x+at)

N W\
® Leonhard Euler (1748)
Calculation on initial

conditions involve “functions”

which depend on x in any

manner : Q Q

® Daniel Bernoulli (1753)
u(x,t) is a (infinite) sum of the
fundamental and  higher X g
harmonics (expressed as sine O

and cosine functions)

N,
' y
’ AL
. ) ’,
> e’

Fourier series

1807 Sur la propagation de la chaleur ﬁ*UdY on
eat
1822 Théorie analytique de la chaleur  conduction

Under certain conditions a
periodic function can be
represented as a (infinite) sum

of sine and cesine functions.

5

Jean Baptiste Joseph
Fourier (1768-1830)

F(x)=a,+a,cosx+a,cos2x+...

+bI sinx+bzsin2x+...

Superposition of
two waves



+ J. C. Maxwell, A dynamical theory of the
electromagnetic field, Philosophical
Transactions of the Royal Society of
London, 155, 1865, 459-512.

+ J. C. Maxwell, On a method of making a
direct comparison of electrostatic with
electromagnetic force; with a note on
the electromagnetic theory of light,
Philosophical Transactions of the Royal
Society of London, 158, 1868, 643-657.

<+ J. C. Maxwell, 4 Treatise on Electricity
and Magnetism , Oxford University Press,
1873.

S1 rasne,

Basic Science

S2 TR,

Research & Development

LY

T il
Technology

(V D =p A
V:B =0
VXxE = —%
VxH=J+2 Electromagnetic Field
J
Maxwell’s
Equations

James Clerk Maxwell
(1831-1879)

hE{E A X CF B AL R B EEBEERIS ?
FEIERLTAARRER, B/NZF - R 2R,
(RIEXCR) 5 8 &5 2 8§ (2011), 97-1168
Would traditional Chinese culture and thinking inhibit the
development of science?
An interview with Academician Wang Shou-guan, compiled
by Sun Xiao-chun and Chu Shan-shan,
Science and Culture Review, 8 (2) (2011), 97-116.



James Clerk Maxwell
(1831-1879)

Heinrich Rudolf Hertz
(1875-1894)

Guglielmo Marconi
(1874-1937)

1886

1896

S1

Michael Faraday A 2
(1791-1867) T
1831 Discovery of
“electromagnetic
induction

"James Clerk Maxwell

(1831-1879)

Albert, Einstein

(1879-1955)

1905 “On the
electrodynamics
of moving bodies”
(Special Theory of

Relativity)




Story of
Relativity

Galileo Galilei
(1564-1642)

Isaac Newton
(1642-1727)

Stephen Hawking’s
visit to Hong Kong
[Ming Pao, 16.06.06]

Albeﬁ Einstein
' (1879-1955)

EEH C BE aRAREFRSHGE

ranes)

fan) Az

Sfephen Hawking
(1942-)

Black body radiation

Max Planck (1901)

9. Ueber das Gesots
der Energicvertoilung im Normalspectrum;
von Max Planck.
(In anderer Form smitgeteilt in der Deutachen Physikalischen Gesallschaft,
Sltmag vom 1. Ostober usd vom 14, December 1000, Verbandlungen
2. p. 202 wad p. 2T, 1000,

Biateitung.
Dis neueren Spectralmessungen von O, Lummer und
E Pringsheim!) und noch auffilliger digjenigen von
H. Rubens und F. Kurlbaum?), welche zugleich ein frber
von H: Beckmann?) erhaltenes Resultat bestitigten, haben
geztigt, ‘dass das zuerst von W. Wien ans molecularkinetischen
Betrachtungen und spiter von mir aus der Theorio der elektro-
isch b bgeleitets Gesetz dor Energi "
im Normal keine i tigheit besitzt.

Photoelectric effect
Albert Einstein (1905)

6. Uber einen
dic Er und Ver di des Luml_ s

heur
von A. Einstein.

Zwischen den theorstischen Vorstollungen, welche sich die
Physiker Gber die Gase und andere ponderable Korper ge-
bildet haben, und der Maxwellschen Theorie der elektro-

ischen Prozesso im sog loeren Raume besteht

ein tiefgreifender formaler U hied. Wikread wir uns
nimlich den Zastand eines Korpers durch die Lagen und Ge-
schwindigkeiten einer zwar sehr groBes, jedoch endlichen An-
2ahl von Atomea usd Elekironen fir vollkommen bestimmt
ansehen, bedienes wir uns zur Bestimmung des eloktromagne-
tischen Zustandes eines Raumes kontinuierlicher riumlicher
Funktionen, so daB also eine endliche Anzabl von GrdBen
nicht als genfigend ben ist zur digen F'

des elektromagnetischen Zustandes eines Raumes. Nach der

Electron interference

Louis de Broglie (1924)
Clinton Joseph Davisson and
Lester Halbert Germer (1927)
George Paget Thomson (1927)

Quantum Mechanics




“I am now exclusively occupied
with the problem of gravitation,
and hope, with the help of a
local mathematician friend, to
overcome all the difficulties.
One thing is certain, however,
that never in my life have I been
quite so tormented. A great
respect for mathematicians has
been instilled within me, the
subtler aspects of which, in my
stupidity, I regarded until now
as pure luxury. Against this
problem, the original problem of
the theory of relativity is child’s
play.”

Letter from Albert Einstein
to a colleague in 1912.

C.F. Gauss (1 777-1 855) G.F.B. Riemann (1826-1866)

..... It remains now to examine the question
how, in what degree and to what extent these
assumptions are guaranteed by experience.

... Either then the actual things forming the
groundwork of a space must constitute a
discrete manifold, or else the basis of metric

relation must be sought for outside that

actuality, in colligating forces that operate
upon it.

... This path leads out into the domain
of another science, into the realm of
physics, into which the nature of this
present occasion forbids us to
penetrate.”

Georg Friedrich Bernhard Riemann

Uber die Hypothesen, welche der Geometrie zu Grunde
liegen (On the Hypotheses Which Lie at the Foundations
of Geometry), 1854



Hermann
Minkowski
(1864-1909)

David
Hilbert
(1862-1943)

“[...] through a peculiar,
pre-established harmony, it
has been shown that by trying
logically to elaborate the existing
edifice of mathematics, one is
directed on exactly the same path
as by having responded to
questions arising from the facts
of physics and astronomy.”

Hilbert’s Sixth Problem:
“To treat in the same manner,
by means of axioms, those
physical sciences in which
mathematics plays an
important part; [...]”

D. Hilbert, Grundlagen der Geometrie (1899)
D. Hilbert, Grundlagen der Physik (1915)

Georg-August-Universitat
———= Gottingen, founded in 1734.

“A physical law must possess
mathematical beauty.”

Paul Adrien Maurice Dirac
Inscription on a blackboard
at University of Moscow in 1956

Dirac Equation (1928)

(3 - e4)) +m e =

Paul Adrien Maurice Dirac
(1902-1984)
Nobel Laureate in Physics 1933




The unreasonable effectiveness of

mathematics in the natural sciences
Richard Courant Lecture in
Mathematical Sciences delivered by
Eugene Wigner at New York University
on May 11, 1959, published in
Communications in Pure and applied
Mathematics, 13 (1) (1960), 1-14.

“The first point is that mathematical concepts
turn up in entirely unexpected connections.
Moreover, they often permit an unexpectedly
close and accurate description of the
phenomena in these connections. ”

“ Secondly, just because of this
circumstance, and because we
do not understand the reasons
of their usefulness, we cannot

know whether a theory
formulated in terms of

. . Eugene Paul Wigner
mathematical concepts is (1902-1995)
uniquely appropriate . ” Nobel Laureate

in Physics 1963

Max-Tegmark

Physical
Our reality a

Mathematical jmathematical
Universe structure |

My>Quest for the

Ntimate Naturesof:Reality

Max Tegmark,

Our Mathematical
Universe: My Quest for the
Ultimate Nature of Reality,

2014.



You can’t hope to
understand the

bt
physics | 1 you've
math

understood the
- math |

physics

Robert Mills (1927-1999)
Space, Time and Quanta:
An Introduction to
Contemporary Physics
(1994), p.337.

C.N. Yang and Robert Mills at Stony Brook in 1999
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MECHANICS

HEAT

Quantity HUnits
Velocity (¥] di:::‘n:c %_ m;::&m‘g;j
Acceleration [f) wloclr?{mn:l-angn L 0 ‘F;Eégp::;-:&

em, per ses
n undal , b wh
Force [ F) Mass x acceleratio mf r al )
?JEHM -1 g o]
* Ft. I, ftlbowt:
Work (Energy) Force = distance Pxs a—gpw;‘:j-
Kinet E virtue of motion | Fmut
natic energy nergy by {sm e ]
Potential energy Energly by virtue of level | mgh
or Fosnl'lon
Power Energy (Work) per sacond %k_ gﬂi’,";»
Mamentum Mass x velocity my  |poundsl: secidyne see.
;R;ng::cd componant gu;;mm ofangle | p o (Seme o5 Force’)
Mament of Ferce Force x perpendic. distance | —— vt Fr, 5 gm. wh. em.
Mechsnical Advant— | Load s
a;c [a:"l'fuﬂ} Effort P
Velocity Ratie (FR) Dn:mce per sec. moved E'Ffwt B
istance per sc. ma
Effici [Emargy) cbhained MA
Efficiency Wﬁmﬁ! %100% qux
i a M Ib. cu. ft
Denetty (2) \"’j u.l:u s ng:lr e
Specific gravity (s) W:llgglvt of substance | —
Pressure (@) Force per unit ares rd L}r:ﬂp;:'.:‘qﬂﬂ‘m

Quantity

ton

Coefficient of linear

Expansien

Coefficiont of volume

axpansion

Caloria

British Tharmal Unit

Therm
Specific heat (#)

Water squivalent
Thermal capacity

Latent Heat [L)

Joule's equivalent (J)

Velume coefFiciont
of das

Pressurs cosfFiciant
of gas

Absolute temperature(T)

Relative humidity

Increase in length of
lem. for 1 degree
rise in femperature

Inerease in volume of
leefor 1 degree
risa in femperature

Heat to raise femper-
ature of 1gm. waker
1 C.

Heak to raise temper-
sture of 11b water
by 1°F

100,000 B.Th.L.

Heat to raise temper-
sture of 1gm.
substance by 1 dagree

Rass X specific heat
Mass ¥ specific heat

Heat fo change 1 gram of
substance ﬁgam l%rld to
liquid, or from liquid to
vapeur, state without
chande of temperature

‘Worl: d

Heat ;ﬁma

Increase in volume of
lee of dasat O'C when
temperature rises 1°C,
pressurs being constant

Incrasse in pressure

unit pressure af D'E’

when temperature rises
1°C, volums baing constant

Temperature measured
from absolute zero

SVLP. af dew
S s T * 1007

Units

LIGHT

73 +£['C)

per "C ;5 per °F

per C 3 per°F

'ﬂ?l.LparIE!

grams (of water)
PR

calories per gm g

B.Th.U. par b
ergsor joules
rgllwtpur
por *C.; per °F.

por “Ct por °F.

Quantity

finition

Focal length (£)

Mirrar or lens formula
Magnification (m)

Refractive index ()
Critical angle (<)

Candle power (I)

Intenpity of Humin—
")

ation

Distance from focus to
mirrar or lans

Image length

Cibjoct Tength

Sing of angle of incidence
Zina o angla of refraction
Angle at which tatal

internal refloction just
begins

Luminous 'mk.nii*? of lamp
minous infansity of lamp of Lep]

Light anargy per unit area
per secend

SOUND

lnits
P em.  inchas
bebed| —
¥
= —_—
sin i
&in =
sin ¢ -)_1". degrees
— bl
foot- candla ;

em.- candle

PRINCIPLES

OF PHYSICS

M. Nelkon

Michael Nelkon,
Principles of Physics,
8th Edition, 1990;
ol first published, 1951.

A — Ynts

Froquency (£) Number of vibrations per cpe
sacond

Wavelangth (A) Diatarice behusan success- P
iva crests or troughs

Velocity of wave () | Distance travalled per sec. | v =£A | feat por secs

metres per soc.

m..g.nq of ehretched AT | epo

Fundamental frequency | owast froquency shtain-| ¥

of closed Fipe sbla from pipe r¥s =) kg

E;n:;:s;;l frequency Vil _ZY? &R

Current (7]

Pobential Difference (V)
Resistance (R

Quantity
Rasistance in Series

Resistance in Parallel

Electrical Energy (W)
Electrizal Power (F)

Heat in Resistor (&)

Electrachemical equiv—
slnt (2]

Electro-Motive Force (E)
Resistivity i
resistance FT;J -

Unik pole - strangth {m)

Magnetic Mement (M)
Angle of Dip (&)

Intensity of Field (H)

Electrostatic unit of
qunnflhf

Capacitance (£)

Quantity N

Quantity of alectrici
Gty o dechicty

Energy per coulomb

Fotential Difference
Current

foight of element depos—
ﬂ'edgbv lamp. in 1 se'\::m

RO at terminals when ne
current flaws

Resistance of lem. or Lin.
eube of material

Strangth of that pole
which repels a similar pola
Tem. awsy in a vecuum
with a force of 1 dyne

Pole-strength x magnatic lengt
Angle between the horizon-
Fal“and the sarth's
resultant field

Force in dynes acting on a
pole of unit strength

That charge which repels a
similar charge 1 cm. away
in @ vacuum with s force

of 1 dyne

Charde on Condenser
P-D. between plates

™, m

h mxZz
¥
fan 8 K

F =Hm

c- ¥

Units
I= RE ampares (A )
FeiR | wvolte (V)
R= % chme [(1)
Q=Is coulombs
R=R+R, —
gdd| —
WeQV=l¥e | Joules
FalV watts
calories

g, pﬂ!couhurb

volte

chm=cms chm-in.

cgs.
g unif

degrass

worsteds

farads

PRINCIPLES
OF PHYSICS

M. Nelkon

et 111

Michael Nelkon,
Principles of Physics,
8th Edition, 1990;

o first published, 1951.



A personal anecdote :
What made me choose
mathematics instead of
physics in graduate
school ?

One day I asked myself the
question: "What is energy?”

I could not give a satisfying
answer for myself. I doubted
whether I had in me a “sense
of physics” or not. I wondered

Michael Nelkon whether I liked physics only
and Philip Parker, because I liked its mathematics.
Advanced Level Physics,

: Many years later, after
Heinemann, London, :
1958. teaching for decades, ...



Invariante Variationsprobleme.
(F. Klein zum fiinfzigjibrigen Doktorjubilinm.)
Von
Emmy Noether in Gottingen.
Vorgelegt von F. Klein in der Sitzung vom 26. Juli 19181).

Es handelt sich um Vari die eine i
liche Gruppe (im Lwnhen Smne) geshtten dle daraus sich er-

finden ihren ulg.»memmn yii ack in den in § 1 formulierten,

mdo Siitzen. Uber diese aus

1 o endes Diffesaatisldlash i

neh \nel pranmre Aussagen mchen nls fiber hel\eblgu cine Grﬂppe
..... e dew G 295

Untersuchn ongen | lulden Das f lge d beruht also auf einer V rb in-
dung der M g mit denen der
L)eschen Gru ppenthe e. Fiir pe ell G Grappen und Variations-

ist diese Verbi g der Methoden nicht neu; ich er-
wiibme Hamel und Her, rglotz fiir spezielle endliche, Lorentz und
seine Schiiler (Blkle)“y}\delni‘rspn zielle unend-
liche Gruppen) In besond re sind die zweite Kleinsche Note und
die itig durch einander beein-

1) m endgiltige Fassung des Manuskriptes wurde erst Endo September

En‘imy Noether
(1882-1935)

E. Noether, Invariante Variationsprobleme,
Nachrichten von der Kéniglichen Gesellschaft
der Wissenschaften zu Géttingen, Mathematisch-
physikalische Klasse (1918), 235-257.

Symmetry of a
physical system

<:> Conservation
Law

Yvette Kenmann- Schwarrhach

The Noether
Theorems
s marn o Yvette Kosmann-Schwarzbach, The Noether

Theorems: Invariance and Conservation Laws
in the Twentieth Century, 2011; original
edition in French, 2006.
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A lesson from optics

< Euclid in his Optics (c. 300
B.C.E.) reduced the study of
optics to geometry by observing
that light propagates in a
straight line.

(Why?) % Heron (c. 100 C.E.) introduced
the Shortest Path Principle.

< Fermat (17t century) introduced
the Quickest Path Principle,
with which he explained the
phenomenon of both reflection
and refraction at one stroke as a
problem on finding minimum.

Does this curve ring a bell? (In solving this problem, Fermat
How does x varies with # ? invented differential calculus.)




Principle of Least Action

(Gottfried Leibniz, Leonhard Euler, Pierre
Louis Maupertuis, 18t century)

Fermat's Principle: Light travels
between two given points along
the path of shortest time.

B

AQ+BQ=A'Q +BQ
>A'B= AP +BP
= AP + BP.

Or, you can locate the point P that yields
a minimum by using the standard method
of calculus, which is not as fast.

Principle of Least Action

(Gottfried Leibniz, Leonhard Euler, Pierre
Louis Maupertuis, 18t century)

Fermat's Principle: Light travels
between two given points along
the path of shortest time.

B

AQ+BQ=A'Q+BQ
>A'B=AP +BP
= AP + BP.

A similar reasoning goes for the
phenomenon of refraction (Snell's
Law of refraction).



Willebrod Snellius
[known in the
English-speaking
world as Snell]
(1580-1626)

C C .
where v, =— , v, =— andcis
nq na

the speed of light in vacuum.

Incident ray

where v4, v, are respectively the
velocity of light in the first and
second medium;

n4, n, are respectively the
refractive index of the first and
second medium.
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Christiaan Huygens P e G
(1629-1695)

Christiaan Huygens,
Traité de la Lumiéere (1678)

VA

BC/v, = AE/v, ,
that is,
ACsinB,/vy, = ACsiné,/v,.
Hence,
sin@,/sin6, = v,/ v,.



Newton’s Corpuscular
Model (around 1660)

i
: Reflection of
Y Ve AV .
G light

Y;sing u,‘s@:ﬁz

v, sin 6, =v, sin6,,

so sin 6, = sin6,, or 6,=6.

\< Refraction

o %\—36 of light
1

(L3

=

v, sin 6, = v, sin 6, ,
so sin 6,/sin 6, = v, /v, .

This implies that v, < v, , that is, light
travels faster in water than in air!

In 1862 Léon Foucault verified by his
experiment that the opposite is true.

Christiaan Huygens " Isaac Newton
(1629-1695) (1642-1727)
Wave Theory - Particle Theory

of Light of Light

Thomas Young Augustin Jean Freshel
(1773-1829) (1788-1827)

Interference and Diffraction of
Light as a Wave



Max Born.
(1882-1990) 3

Niels Bohr :
(1885-1962)

Louis da Broglie
(1892-1989)

"9
(1889-1969)
Werner
NHeise
(1901-1996) Tud Dirac
(1902-1984.)

A mechanical
model (a la
Polya) to see
when

AX/v;+XB/ v,

is a minimum?

Eywin Schrédinger

At equilibrium the potential energy
is a minimum, so mA;+myh, is a
minimum, so m; AP,+m, BP, is a
maximum, so m; AX+m, XB is a
minimum.

Put mi=1/v, and m, = 1/v,, we
have AX/v; + XB/v, is a minimum.
At equilibrium we also have
my sin 6, = m, sin 6,, that is,

sin 6,/sin &, = v;/v, |.




The vertical line intersects the circle AXB
at T. X is located on the horizontal line PQ
such that sin 6,/ sinf, = v,lv, .
We want to show that

AX/v;+XB/v, < AY/v; + YB/v, .

By Ptolemy’'s Theorem we have

AX - BT + AT - XB = AB - XT,
and AY - BT + AT - YB > AB - YT .
Hence, AX - BT + AT - XB < AY - BT + AT - YB
because XT < YT (#) .
But BT = 2R sin6, and AT = 2R sin6;, where
R is the radius of the circle AXB (Why?)
Hence, AT/BT = sin 6,/ sin6, = vi/v, .
Substitute into (#) , we have

AX+XB-v;/v, < AY+YB-v /v, ,

or AX/v,+ XB/v, < AY/v, + YB/v, .

A short enrichment
course/workshop in ten
three-hour sessions was
conducted each year from
2006 to 2011 at HKU for
youngsters about to
embark on their
undergraduate study. It
tried to integrate the two

subjects mathematics
and physics with a
historical perspective, to

show how the two subjects
are intimately interwoven.



The underlying theme would be
the role and evolution of

mathematics (mainly
calculus, with related topics in
linear algebra and geometry) in
understanding the physical
world, from the era of Isaac
Newton’s mechanics to that of
James Clerk Maxwell’s
electromagnetism and possibly
beyond, to that of Albert
Einstein’s relativity. In other
words it tries to tell the story

of triumph in mathematics
and physics over the past four

centuries. The physics would
provide both the sources of
motivation and the
applications.

4th century Physical

B.C.

Many
centuries
in between

17th
century

view of
Aristotle

Physical
view of
Copernicus,
Kepler,
Galileo,
Newton

Euclidean
geometry

Geometry
(areal/volume)
Algebra
(equations)

Calculus
(functions —
polynomial,
rational,
trigonometric,
logarithmic and
exponential)



18th

Problem 2 in Tutorial 1
century

A ball is dropped at a point of
height H from the ground.

19th Suppose every time the ball

century rebounds its velocity is 3/4 of
that with which it hits the
ground.

—— Discuss the subsequent

century motion of the ball. (Will the

ball bounce forever? What is
the total distance the ball will
travel?)




Motion in a straight line with

uniform acceleration

Laws of Falling Bodies (in history)

'U - u . P .-_'o -pt=0
ek a,a 1s a constant. ;szo S1lt=1
s s".-‘t:Z
SLv=u+at S
=T ¥ £3
® [ ° [ Uzv i B
What is the distance s covered in time 7 ? J Y
1 1 1,
g = 7(’& + )t = 7(21{, + at)t = ut + 7at Albert of Saxony (1316-1390) VS
Vg Nicole Oresme (1320-1382) VeT
Leonardo da Vinci (1452-1519) S1=5=5 -5 —
u 1 2 3 4
s Galileo Galilei (1564-1642) S= B8 _8_..
> 1 3 5 7
' g $ 2
1 o W Ee— 4e
s = ut + —at “ . -
2 \0¢c "
. Which case tells us that
v=u-+at " “1SsxT??

If S o< T?, whyisV < T,
and conversely?

Eliminating # we obtain 25¢

v2 = u? + 2as




Free fall

t(sec) s (cm) Average velocity%:(’)(cm/sec.)
0 0 (490 — 0)/1 = 490
0.1 49 (490 — 49)/0.9 = 490
0.5 1225 (490 —122.5)/0.5 =735
0.9 3969 (490 — 396.9)/0.1 = 931
0.95 442.23 (490 —442.23)/0.05 =9554
0.99  480.25 (490 —480.25)/0.01 =975
0.995 485.11 (490 —485.11)/0.005 = 978
0.999 489.02 (490 —489.02)/0.001 =980

Instantaneous velocity

490  ate=1is 980 cm./sec.

S=S@)=crr |If ST, whyis VT ?

V=V({#)=? (instantaneous velocity)
SA+AD-S(E)_ |1y CH+AL*—ct?

= Imm
At—0 At Af—0 At
2
— lim d2AHADT] iy goesAf=2ct
At—0 At At—0
In general, fora function y=f(x), the

derived function 2: (also written as  f'(x),

called the derivative of y=f(x))is given
by D= lim SEHDS®) (it exists).
dx h—0 h

Geometric interpretation: Slope of tangent
to a curve.




In general, for a function y=f(x), the

derived function dy (also written as f'(x),

-

called the derivative of y=f(x))is given
by D= lim SEDI® (£ it exists).
dx h—0 h

Geometric interpretation: Slope of tangent
to a curve.

Consult any standard textbook on calculus
to learn (i) some basic properties about
f'(x), (ii) some formulas of f'(x) of certain
elementary functions (rules of
differentiation).

A simple example:

@)=, &= f)=5x

%:f”(x):mxi*, etc.

Given V =£=u (constant velocity), what is S=S(")?

dt
If V<T,whyis S <T? ?

VT S=ul

U = area under the curve

on the interval [0,7]

Given V =£= gt (constant acceleration), what is

S=S(T)? 4

. o s=annm[v(%);y(%)w(%}...;,V((N;)r)][%]
AR U

s R T e



Given V:d_S: gt (constant acceleration), what is

S=S(T)? &
P O 4 e Y e (e
l Al T 3@2”@";‘”]
A sk

In general, for a function y= f(x), a working definition of
the (definite) integral _[j J(x)dx is given by
o s fan P28y o g 20=0Y, oy W-DB-2)|(b-a
Nlam[f(”f[ ’ v ]+f[ " n ]+ +f[ " n JM N]
(1f 1t exists).

Geometric interpretation: area under a curve on the
mterval [a,b].

Michael Spivak, The Hitchhiker’s
Guide to Calculus (1995)

Otto Toeplitz, The Calculus: A
Genetic Approach (1963)

Calculus,differential
equation and vector

field — Chapter Two
in the video CHAOS

produced by Etienne
Ghys, Jos Leys and
Aurélien Alvarez

http://Iwww.chaos-math.org/en/film



DIFFERENTIATION
Motion on a curve S —_
best” linear approximation (a local

@.What is meant by velocity and property) - /
acceleration in this case?
8 o= /\ P
p ©
.R /

' q
A " .
4B .
\ ey
. o8
-
. " "\
.. )
R '
% '
. H
\ .
. .
S

Vector P
¥ o n Jirect;zst o A B =
A € g
s et (ﬁa QR vanishes “faster” than AB
=9 e 7
VQ—V‘—"% Wlwé R
Vo=Vi#T . . .
: i.e. —— becomes arbitrarily small as
AB
Proj ectile AB is made sufficiently small.
1-dimensional case 2-dimensional case
Circular Motion f(zo +h) = f(zo) + L(h)| |f(zo+h,yo+ k) =
Vy w‘,“cz-v. +E(h’)|h‘a f(xﬂa yU) + L(h:' k)
where L is linear and| +e(h, k)|(h, k)|,
lim e(h) = 0. where L is linear and|
h—=0
lim e(h, k) =
(h,k)—(0,0)




1-dimensional case

2-dimensional case

f(zo +h) = f(zo) + L(h)|

+e(h)[h],
where L is linear and|
}]}.ull}]:}) e(h) = 0.

L(h) = ah, where

o= i L@ ) = F(20)
h—0 h
_df
 dx (o),
derivative of f at xo.

f(zo + h,yo + k) =
f(xo,y0) + L(h, k)
+e(h, k)|(h, )],
where L is linear and]

lim e(h,k)=0.
(,k)—=(0,0)

L(h,k) = ah + bk, where
f(l'(] + h’a y(]) - f($03 yD)

a=lim h
o
= 8_;:(37033}0)3
k—0 k

of
— 8'y (xoa yO)a
partial derivatives of f at

(370: yO)'

RATE OF CHANGE

DIFFERENTIAL EQUATION

= an equation involving derivatives

(partial derivatives) of various orders

dy d*y
F(:}:,y,@,@,---) =0, where
dz?2  dx \da)
0z 0z 0%z 0%z 0%z
G — — -+ | =0, wh
(mﬂyE'zﬂ a:c? 8y3 83:23 axayﬂ 83}23 ) ’W ere

0%z 0 [0z 0%z 0 %
dz2  Ox \Ox )’ Oxdy Ox \9dy)’
o0 (02

02 — 9y \ay ) etc.

The simplest type of differential equation is
dy
- = fla) o ().

A solution of (%) is called a primitive (or an

anti-derivative, or an indefinite integral of

f), in symbol [ f(x)dz.



INTEGRATION
“summation” by going to the limit (a global property)

One example: Knowing the shape and the density
distribution fof an object, calculate its mass.

Case 1: Straight line

mn
5,3, mass = lim Y f(&)Ax;
potop—et—  — - A—0,;
B 2
i idea of definite integral

Case 2: Plane lamina

mass = lim
0/

w
| i

~
\

: (&, mi)AA;

% idea of double integral
Case 3: Solid

= L
; é_l//u> mass Ali]il[} @;1 f(&?-) T’t? C’E) ?
Q\\/&U

idea of volume integral

Case 4: Clirling wire
A—0

idea of line integral

(€ pay

iley : Straight Curves -

Bridget
(1963)

mass = ilﬂlo Yoicy f(&iimi, G)AS;

Compare with lines of force of WA
"kq / idea of surface integral

Faraday, notion of field of Maxwell in
physics, integral curves in mathematics.




This particular
differential equation

comes up in
numerous instances,
whenever some sort
of oscillation occurs.

Simple Harmonic Motion

This particular
differential equation
dy
dx kY
comes up in
numerous instances,
whenever the rate of
change of a quantity
is proportional to the
quantity itself.

Exponential growth
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HARMONIES IN NATURE: A DIALOGUE
BETWEEN MATHEMATICS AND PHYSICS

Man-Keung STU
Department of Mathematics
The University of Hong Kong
Pokfulam, Hong Kong
mathsiu@hkucc.hku.hk

ABSTRACT

The customary practice in school to teach mathematics and physics as two separate subjects
has its grounds. However, such a practice deprives students of the opportunity to see how the
two subjects are intimately interwoven. This paper discusses the design and implementation
of an enrichment course for school pupils in senior secondary school who are about to embark
on their undergraduate study. The course tries to integrate the two subjects with a historical
perspective.

1 Why is an enrichment course on mathematics-physics de-
signed?

In school it is a customary practice to teach mathematics and physics as two separate
subjects. In fact, mathematics is taught throughout the school years from primary
school to secondary school, while physics, as a full subject on its own, usually starts in
senior secondary school. This usual practice of teaching mathematics and physics as two
separate subjects has its grounds. To go deep into either subject one needs to spend at
least a certain amount of class hours, and to really understand physics one needs to have
a sufficiently prepared background in mathematics. However, such a practice deprives
students of the opportunity to see how the two subjects are intimately interwoven.
Indeed, in past history there was no clear-cut distinction between a scientist, not to
mention so specific as a physicist, and a mathematician.

Guided by this thought we try to design an enrichment course for school pupils in
senior secondary school, who are about to embark on their undergraduate study in two
to three years’ time, that tries to integrate the two subjects with a historical perspec-
tive. Conducting it as an enrichment course, we are free from an examination-oriented
teaching-learning environment and have much more flexibility with the content. Admit-
tedly, this is not exactly the same as the normal classroom situation with the constraint
imposed by an official syllabus and the pressure exerted by a public examination. How-
ever, just like building a mathematical model, we like to explore what happens if we
can have a bit more freedom to do things in a way we feel is nearer to our ideal.

Albert Einstein and Leopold Infeld sum up the situation succinctly, “In the whole
history of science from Greek philosophy to modern physics there have been constant
attempts to reduce the apparent complexity of natural phenomena to some simple fun-
damental ideas and relations. This is the underlying principle of all natural philosophy.”
[Einstein & Infeld, 1938]. Such a process makes demand on one’s curiosity and imag-
ination, but at the same time requires disciplined and critical thinking. Precision in
mathematics as well as in words is called for. Galileo Galilei already referred to mathe-
matics as the language of science in his I¢ Saggiatore (The Assayer) of 1623, “Philosophy

is written in this grand book — I mean the universe — which stands continually open
to our gaze, but it cannot be understood unless one first learns to comprehend the lan-
guage and interpret the characters in which it is written. It is written in the language
of mathematics, and its characters are triangles, circles, and other geometric figures,
without which it is humanly impossible to understand a single word of it; without these,
one is wandering about in a dark labyrinth.”

By promoting this view Galileo made a significant step forward in switching the
focus from trying to answer “why” to trying to answer “how (much)”, that is, from a
qualitative aspect to a quantitative aspect. In the Eastern world a similar sentiment
was expressed by many authors of ancient classics that may sound like bordering on
the mystical side. One such typical example is found in the preface of Sun Zi Suan Jing
(Master Sun’s Mathematical Manual) in the 4th century, “Master Sun says: Mathemat-
ics governs the length and breadth of the heavens and the earth; affects the lives of all
creatures; forms the alpha and omega of the five constant virtues; acts as the parents
for yin and yang; establishes the symbols for the stars and the constellations; manifests
the dimensions of the three luminous bodies; maintains the balance of the five phases;
regulates the beginning and the end of the four seasons; formulates the origin of myriad
things; and determines the principles of the six arts.”

The conviction in seeing beauty and order in Nature was long-standing. Plato’s
association of the five regular polyhedra to the theory of four elements in Timacus (c.4th
century B.C.) is an illustrative example. Over a millennium later, Johannes Kepler tried
to fit in the motion of the six known planets (Saturn, Jupiter, Mars, Earth, Venus,
Mercury) in his days with the five regular polyhedra in Mysterium Cosmographicum
of 1596. By calculating the radii of inscribed and circumscribed spheres of the five
regular polyhedra nestled in the order of a cube, a tetrahedron, a dodecahedron, an
icosahedron and an octahedron, he obtained results that agreed with observed data to
within 5% accuracy! He also thought that he had explained why there were six planets
and not more! Now we realize the lack of physical ground in his theory, beautiful as it
may seem. Still, it is a remarkable attempt to associate mathematics with physics, and
indeed it led to something fruitful in the subsequent work of Kepler.

Well into the modern era the explanatory power of mathematics on Nature is still
seen by many to be mystical but fortunate. Eugene Paul Wigner, 1963 Nobel Laureate
in physics, refers to it as “the unreasonable effectiveness of mathematics in the natural
sciences”. Heinrich Rudolf Hertz even said (referring to the Maxwell’s equations which
predicted the presence of electromagnetic wave that he detected in the laboratory in
1888.), “One cannot escape the feeling that these mathematical formulas have an in-
dependent existence of their own, that they are wiser than we are, wiser even than
their discoverers, that we get more out of them than was originally put into them.”
Robert Mills, an eminent physicists of the Yang-Mills gauge theory fame, says, “You
can’t hope to understand the [physics / math] until you've understood the [math /
physics].” [Mills, 1994]. This dictum that emphasizes a two-way relationship between
mathematics and physics furnishes the guideline for our enrichment course.

2 How is such a course run?

The enrichment course, with its title same as that of this paper, ran for ten sessions
each taking up three hours on a weekend (outside of the normal school hours). It had
been run four times, in the spring of 2006 to 2009, in collaboration with a colleague
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at the Department of Physics in my university. Much as we wish to offer a truly
integrated course, other constraints and factors (individual expertise, affordable time
of preparation, inadequacy on our part, lack of experience in this new venture) force
some sort of division of labour so that each one of us took up about half of the course.
However, we still tried to maintain a spirit of integration in having a balanced emphasis
on the mathematics and the physics in a suitable manner. In this paper I will naturally
tell more about the part I took up, which involved the first two sessions, two intermittent
sessions and the final session.

The underlying theme of the course is the role and evolution of mathematics, mainly
geometry and calculus, with related topics in linear algebra, in an attempt to understand
the physical world, from the era of Isaac Newton to that of James Clerk Maxwell
and beyond it to that of Albert Einstein. In other words, it tries to tell the story of
triumph in mathematics and physics in the past four centuries. The physics provides
both the source of motivation and the applications of a number of important topics
in mathematics. Along the way both ideas and methods are stressed, to be learnt in
an interactive manner through discussion in tutorials and group work on homework
assignments. A rough sketch of the content of the course is summarized in Table 1.
Considering the level of the course, it is to be expected that topics near to the end are
treated only after a fashion, mainly for broadening the vista of the students rather than
for teaching them the technical details.

3 A sketch of the content of the course

Each session of the enrichment course consists of a lecture in the first hour followed by
a tutorial. The lecture serves to highlight some keypoints and outline the development
of the topic. What is covered is selective in the sense that the material illustrates some
theme rather than provides a comprehensive account. Interested students are advised
to read up on their own relevant references suggested in each session. [A selected sample
of such books can be found in the list of references, some of which are more suitable
for the teacher than the student (Barnett, 1949; Boyer, 1968; Einstein & Infeld, 1938;
Feynman, 1995; Hewitt, 2006; Lines, 1994; Longair, 1984; Mills, 1994; Olenik, Apostol
& Goldstein, 1985/1986; Pdlya, 1963; Siu, 1993).] The course is seen as a means to
arouse, to foster and to maintain the enthusiasm of students in mathematics and physics
more than as a means to equip them with a load of knowledge.

To keep within the prescribed length of the paper I would not give a full account of
the content but select certain parts, particularly the beginning part that sets the tone of
the course, with supplementary commentary, to illustrate the intent of the enrichment
course. The intent is to highlight the beautiful (some would say uncanny!) and intimate
relationship between mathematics and physics, in many cases even mathematical ideas
that have lain quietly in waiting for many years (sometimes more than a thousand
years!) that enhance theoretical understanding of physical phenomena. In fact the
relationship is two-way so that the two subjects benefit mutually from each other in
their development. In section 4 some sample problems in tutorials are appended in the
hope of better illustrating this intention.

The course begins with a discussion on the Aristotelian view of the physical world
that came to be known since the 4th century B.C.. All terrestrial matters, which are

held to be different from heavenly matters, are believed to contain a mixture of the
four elements in various compositions. Each of the four elements is believed to occupy
a natural place in the terrestrial region, in the order of earth (lowest), water, air, fire
(uppermost). Left to itself, the natural motion of an object is to go towards its natural
position, depending on the composition and the initial position. Hence, a stone (earth)
falls to the ground but a flame (fire) goes up in the air. A natural motion has a cause. It
is believed that the weight of a stone is the cause for its free falling motion. According
to the Aristotelian view, a heavier stone will fall faster than a lighter one. Any motion
that is not a natural motion is called a violent motion, believed to be caused by a force.

We next bring in the physical world view that Galileo propounded in the first part
of the 17th century. In particular, he demolished the theory that a heavier object falls
faster by mathematical reasoning (thought-experiment) in Discorsi e dimonstrazioni
matematiche intorno a due nuove scienze (Discourses and Mathematical Demonstra-
tions Concerning Two New Sciences) of 1638. Suppose object A; has a larger weight
W, than the weight W, of object Ay. Tie the objects A; and A, together to form an
object of weight Wi 4+ W,. The more rapid one will be partly retarded by the slower;
the slower one will be somewhat hastened by the swifter. Hence, the united object will
fall slower than A; alone but faster than Ay alone. However, the united object, being
heavier than A;, should fall faster than A; alone. This is a contradiction! [Hawking,
2002, p.446]. A commonly told story says that Galileo dropped two balls of different
weights from the top of the Tower of Pisa to arrive at his conclusion. There is no his-
torical evidence that he actually did that. The significant point does not lie so much in
whether Galileo actually carried out the experiment but in his arrival at the conclusion
by pure reasoning. Together with pure reasoning, Galileo was known for his emphasis on
observations and experiments as well, notably his experiments with an inclined plane.
By observing that a ball rolling down an inclined plane will travel up another inclined
plane joined to the first one at the bottom until it reaches the same height, he saw that
the ball will travel a greater distance if the second inclined plane is placed less steep
than the first one, the greater if the second inclined plane is less steep. From thence a
thought-experiment comes in again. If the second inclined plane is actually placed in a
horizontal position, the ball will travel forever without stopping. “Furthermore we may
remark that any velocity once imparted to a moving body will be rigidly maintained
as long as the external causes of acceleration or retardation are removed, a condition
which is found only on horizontal planes. ... it follows that motion along a horizontal
plane is perpetual ...” [Hawking, 2002, p.564]. This motivated him to announce his
famous law of inertia, which becomes the first law of motion in Newton’s Philosophiae
naturalis principia mathematicas (Mathematical Principles of Natural Philosophy) of
1687: “Every body persevers in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed thereon.” [Hawking,
2002, p.743]. This fundamental modification on the Aristotelian view (in a sense ac-
tually more natural according to daily experience!) that a force acting on an object is
exemplified not by the speed of its motion but by the change in speed (acceleration),
led to a quantitative description of this relationship in Newton’s second law of motion
(which yields the famous formula F' = ma). It turned a new page in the development of
physics. We follow with a discussion on the work of Johannes Kepler in calculating the
orbit of Mars based on the meticulously kept observed data of Tycho Brahe [Koestler,
1959]. On the one hand the story displays a beautiful interplay between theory and



experiment. On the other hand Kepler’s laws on planetary motion provide a nice lead
to a discussion on Newton’s law of universal gravitation.

We next discuss the theory of wave motion along with the mathematics, culminat-
ing in the theory of electromagnetism and Maxwell’s equations. Mathematics owed to
physics a great debt in that a large part of mathematical analysis that was developed
in the 18th and 19th centuries have to do with the Vibrating String Problem. We
talk about the all-important notions of function and of equation. Together with the
discussion on vector calculus and the generalized Fundamental Theorem of Calculus,
there is much more material than enough to take up the second part of the course. The
unification of electricity, magnetism and light through the electromagnetic wave is a
natural lead into the final third of the course, which is spent on a sketch of the theory
of relativity and on quantum mechanics. Some probability theory is introduced to let
students appreciate the stochastic aspect that is not usually encountered in the usual
school curriculum. The close relationship between geometry and physics is stressed in
the final episode on the theory of general relativity. In a letter to Arnold Sommerfeld
dated October 29, 1912 (collected in A. Hermann, Finstein/Sommerfeld Briefwechsel,
Schwabe Verlag, Stuttgart, 1968, p.26) Albert Einstein wrote, “I am now exclusively
occupied with the problem of gravitation, and hope, with the help of a local mathemati-
cian friend, to overcome all the difficulties. One thing is certain, however, that never in
my life have I been quite so tormented. A great respect for mathematicians has been
instilled within me, the subtler aspects of which, in my stupidity, I regarded until now
as pure luxury. Against this problem, the original problem of the theory of relativity
is child’s play.” The ‘mathematician friend’ refers to Einstein’s school friend Marcel
Grossmann, and the mathematics refers to Riemannian geometry and tensor calculus.
The story on the work of Carl Friedrich Gauss and Georg Friedrich Bernhard Riemann
in revealing the essence of curvature which lies at the root of the controversy over the
Fifth Postulate in Euclid’s Elements (but which had been masked for more than two
thousand years when the attention of mathematicians was directed into a different di-
rection) and its relation to Einstein’s idea on gravitation theory is fascinating for both
mathematics and physics. No wonder Riemann concluded his famous 1854 lecture ti-
tled Uber die Hypothesen welche der Geometrie zu Grunde liegen (On the hypotheses
which lie at the foundation of geometry (an English translation can be found in David
Eugene Smith (ed.), A Source Book in Mathematics, McGraw-Hill, New York, 1929,
pp.411-425) with: “This path leads out into the domain of another science, into the
realm of physics, into which the nature of this present occasion forbids us to penetrate.”

4 Some sample problems in tutorials

In this course more than half of the time in each session is spent as a tutorial, which is
regarded as an integral part of the learning experience. Students work in small groups
with guidance or hint provided on the side by the teacher and a team of (four) teaching
assistants. At the end of each session there is a guided discussion with presentations by
students. A more detailed record of the solution is put on the web afterward for those
who are interested to probe further. Some sample problems in the tutorials are given
below to convey a flavour of the workshop.

Question 1. A, B,C, D move on straight lines on a plane with constant speeds.
(The speed of each chap may be different from that of another.) It is known that each
of A and B meets the other three chaps at distinct points. Must C' and D meet?

Under what condition will the answer be ‘yes’ (or ‘no’)? [The question was once given
in an examination at Oxford University.]

Discussion: C' and D will (respectively will not) meet if they do not move (respec-
tively move) in the same or opposite directions. The catch is a commonly mistaken
first reaction to draw a picture with two straight lines emanating from a common point
Mg (the point where A and B meet) and two more straight lines, one intersecting the
first line at M 4c and the second line at Mpe, the other one intersecting the first line at
M4p and the second line at Mpp. It seems that the answer comes out obviously from
the picture until one realizes that a geometric intersecting point needs not be a physical
intersecting point! This problem is set as the first problem in the first tutorial to lead
the class onto the important notion of spacetime, which will feature prominently in the
theory of relativity. Viewed in this context, no calculation is needed at all!

Question 2. Suppose you only know how to calculate the area of a rectangle —
our ancestors started with that. Explain how you would calculate the area of a triangle
by approximating it with many many rectangles of very small width. This answer, by
itself, does not sound too exciting. You can obtain it by other means, for instance by
dissection — our ancestors did just that! However, what is exciting is the underlying
principle that can be adapted to calculate the area of regions of other shapes. Try to
carry out a similar procedure for a parabolic segment. (Find the area under the curve
given by y = ka? from z = 0 to 2 = a. What happens if you are asked to find the area
under the curve y = ka®? y = ka'? - ? Later you will see how a result enables us to
solve this kind of problem in a uniform manner.)

Discussion: This problem is set at the beginning of the course to introduce some
ideas and methods devised by ancient Greeks and ancient Chinese on problems in
quadrature, to be contrasted with the power of calculus developed during the 17th
and 18th centuries, culminating in the Fundamental Theorem of Calculus with its gen-
eralized form (Stokes” Theorem) established through the development of the theory of
electromagnetism in the 19th century. For this particular problem some clever formulae
on the sum of consecutive rth power of integers 1" +2"+3" +- - -+ N" are needed. That
kind of calculation is not totally foreign to the experience of school pupils and yet offers
some challenge beyond what they are accustomed to, which is therefore of the level of
difficulty the workshop is gauged at. After struggling with specific but seemingly ad
hoc ‘tricks” of this sort, students would appreciate better the power afforded by the
Fundamental Theorem of Calculus when they learn it later.

Question 3. (a) By computing the sum

l+z+22+- 42"

where z = ¢, and using Euler’s formula

e = cosf +isiné,
find a simple expression for
1+ cos@ + cos20 + --- + cosnb
and sin g + sin 20 + - - - 4 sinnf.
(b) Apply the result in (a) to calculate the area under the curve y = sinx on
[0, 7] from scratch in the way you did for y = 2? in the first tutorial. Do the same for
y =cosz on [0,7]. (How do you normally calculate this area in your class at school?)



Discussion: Besides introducing a most beautiful formula in mathematics, this
problem further strengthens students’ appreciation of the Fundamental Theorem of
Calculus. In the course of explaining Euler’s formula students are led into the realm of
complex numbers, to the ‘twin’ functions of logarithm and exponentiation.

Question 4. (a) Pierre Simon Laplace (1749-1827) once said, “By shortening the
labors, the invention of logarithms doubled the life of the astronomer.” To appreciate
this quotation, let us work on an multiplication problem (81276 x 96343) like people
did before the invention of logarithm. The method, known as “prosthaphaeresis”, is
based on the addition formula of trigonometric functions.

(i) If 2cos A = 0.81276 and cos B = 0.96343, find A and B.
(ii) Calculate A + B, A — B, and hence calculate cos(A + B), cos(A — B).

(iti) Calculate cos(A+ B)+cos(A— B), which is equal to 2 cos A cos B, and hence find
out what 81276 x 96343 is.

(b) Compare Napier’s logarithm with the natural logarithm you learn in school.

(c) Making use of the idea Leonhard Euler (1707-1783) explained in Chapter XXII
of his Vollstandige Anleitung zur Algebra (1770), compute the common logarithm of 5,
log 5, in the following steps:

(i) As 5 lies between 1 and 10, so log 5 lies between 0 and 1. Take the average of 0
and 1, which is 1/2. Compute 10'/2, which is the square root of 10, say aj.

(i) Decide whether 5 falls into [1, a;] or [a;, 10]. Hence decide whether log 5 falls into
[0,1/2] or [1/2,1]. It turns out log 5 falls into [1/2,1]. Take the average of 1/2
and 1, which is 3/4. Compute 10%4, which is the square root of 10 multiplied by
the square root of 102, say as.

(iti) Decide whether 5 falls into [ay,as] or [az,10]. Hence decide whether log 5 falls
into [1/2,3/4] or [3/4,1]. It turns out log 5 falls into [1/2,3/4]. Take the average
of 1/2 and 3/4, which is 5/8. Compute 10°/%, which is the square root of 10'/2
multiplied by the square root of 1034, say as.

(iv) Continue with the algorithm until you reach a value of log5 accurate to three
decimal places.

Discussion: Note the similar underlying idea of converting multiplication to ad-
dition in “prosthapharesis” and in logarithm. That allows the class to see how John
Napier and later Henry Briggs devised their logarithm in the early 17th century. The
bisection algorithm explained in (c), though seemingly cumbersome from a modern
viewpoint, is nonetheless very natural and simple, reducing the calculation to only
finding square root. It provides an opportunity to go into the computation of square
root by the ancients, first propounded in detail in the ancient Chinese classics Jiu Zhang
Suan Shu (Nine Chapters on the Mathematical Art) compiled between 100 B.C. and 100
A.D. For the generation of youngsters who grow up with calculators and computers, this
kind of ‘old’ techniques may add a bit of amazement as well as deeper comprehension.

Question 5. In an x — t spacetime diagram drawn by an observer S who regards
himself as stationary, draw the world-line for S and the world-line for an observer S’
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moving with uniform velocity v (relative to S). At ¢ = 0 both S and S are at the
origin O. Both S and S’ observe a light signal sent out from O at ¢ = 0, reflected back
by a mirror at a point P, then received by S’ at ). Which point on the world-line
for " will S” regard as an event simultaneous with the reflection of the light signal
at P? Call this point P'. Show that the slope of the line P'P is equal to v/c?, where
¢ is the speed of light (units omitted). [The physical interpretation is as follows. S
regards two events, perceived as simultaneous by S’ as separated by a time At given
by At = (v/c®)Ax, where Az is the distance between the events measured by S and v
is the velocity of S’ relative to S']

Discussion: We pay attention to the physical interpretation of a mathematical
calculation and vice versa. This problem focuses on the key notion of simultaneity
in the theory of special relativity. There is a note of caution for this problem. The
picture of the spacetime diagram (according to the observer S) is to be seen in two
ways: (i) the picture as it is, just like a picture one is accustomed to see in school
geometry, (ii) the coordinate system of S with coordinates assigned to each event. In
the lecture we take good care in denoting points in (i) by letters P, @, P, O, etc., and
events in (ii) by (z(P),t(P)), (z(Q),t(Q)), (z(P"),t(P")), (z(0),t(0)), etc. One can
read the same in the shoes of the other observer S’, in which case events in (ii) will
be denoted by (2/(P),t'(P)), (2(Q),t(Q)), (&'(P"),t'(P")), (z/(0),t(0)), etc. In the
lecture we also explain how xz(P), t(P) are related to 2/(P),t'(P) and vice versa (by the
Lorentz transformation).

5 Conclusion

The triumph of Maxwell’s theory on electromagnetism resolved many problems and yet
introduced new difficulties that were resolved by Einstein’s theory of special relativity.
The triumph of Einstein’s theory of special relativity resolved many problems and yet
introduced new difficulties that were resolved by Einstein’s theory of general relativity.
But then the theory of general relativity introduces a more difficult problem on incom-
patibility with quantum mechanics, which is not revealed until one comes up with a
situation where both the mass involved is very large and the size involved is very small,
for instance, a black hole [Greene, 1999; Penrose, 2004]. Physics will march on to solve
further problems, and so will mathematics, hand-in-hand with physics, in a harmonious
way.
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Time period

Physics

Mathematics (mainly)

4th century B.C.

Physical view of Aristotle

Euclidean geometry

many centuries
in between

geometry (area / volume)
algebra (equations)

17th century

physical view
of Copernicus,
Kepler, Galileo,
Newton, ...

vectors in R? and R?, calculus
in one variable (functions,
including polynomial,
rational, trigonometric,
logarithmic and exponential)

18th century

wave and particle

differential equations,
Fourier analysis, complex numbers

19th century

theory of
electromagnetism
(Maxwell’s equations)

vector calculus, Stokes” Theorem
(Fundamental Theorem
of Calculus)

20th century

theory of special
and general relativity,
quantum mechanics

probability theory,
non-Euclidean
geometries of spacetime

Table 1
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A dialogue between Mathematics & Physics:

Examples in Secondary School Curriculum

Choi Wai Fung, Brian (St. Paul’s Co-educational College)

|. Mechanics

1. Kinematics & Dynamics

(a)Work done by an applied force F with displacement s W=F s=Fscos@

(b) Power by an applied force F with velocity v P=2"=F.v=Fvcos®

(c) Moment (or torque) by an applied force F with distance r from a fixed point

T=rxF=rFsin0d

2. Projectile motion

When an object is thrown on the ground with an angle 6 from the

horizontal, the maximum range of an object is obtained when

4 :%, which is independent of the initial velocity v,. v“/ 0

21 April, 2016

Horizontal Component

Vertical Component (Taking upward as positive)

Initial velocity u, =v,cosé u, =v,siné
Final velocity v =v,cos60 v, =—v,siné
Acceleration a,=0 a,=-8
Time t

Vertical Acceleration: a, =—

—gt=(-v,sin@)—v, sin g

(= 2v,sin @
8

: 2 L N 2
Horizontal Displacement: ~ x=vt = (v, cos 6)( 2vy sin 9) _ Y @sinfcosb) _ v, sin26
8 8 I

x is max. when sin28 =1, i.e. 20=%, ie. 9:%.
The use of double angle formula in trigonometry helps to determine the exact value of the angle

for max. range.

Extension: If the object is projected on an inclined plane with angle & and the angle between the

L . . T 6
initial velocity and the plane is &, then for max. range, & =———

4 27

Web link: http://ggbtu.be/m1082291

3. Motion under gravity with air resistance

4 H . . . . . . ——ee—— starting line
Consider an object with mass m falling under gravity with air resistance and
initial velocity v,. ( ‘
Suppose air resistance o< velocity v. Let the air resistance = kv, where kis a . \./
positive constant. l l*"*
Net force acting on the object F =mg —kv. ™



If k="8 , net force is 0, so the object will fall under constant velocity v, .

Vo

8

If k28 , by Newton’s 2" Law, ma = mg — kv

Yo

v _
dt §

=l

k
—v
m

mg —kv = e (mg —kv,)

k
kv=mg+e " (kvy,—mg)

k
In the long run, limv = lim{% +e ”‘I[VU - EH =18
1—o0

1o k mg
mg

k
The limit % is called the terminal velocity. ﬂ"-
(i) v < ==
k

4. Circular Motion

To obtain the expression of centripetal acceleration, we have to use vectors operation and limits.

D _
AV f

f
PN
AW S\
) ! vl vl

A8 A0

In the first figure, the velocity vectors v; and v, are tangential to the circular path. Thus they are

perpendicular to the radius.

Consider the direction of acceleration, i.e. the direction of Av. When A8 — 0, Av will tend to a
direction perpendicular to v, and v, , i.e. Av is along radial direction towards the centre. Hence

the acceleration is called centripetal acceleration.

Consider the magnitude of Av, when A8 — 0, |Avl= £ =Iv1A8.

my
(i) vy = —=
k



. e TAVL L IVIAG - A8 IVIrAG
.. centripetal acceleration | a |= lim—— = lim =limlvl—=lim———
A0 Af A0 At At—0 At A0 o At

Ivl,. As_lvl2

m -—=
r A0 At r

2

. v
In scalar notation, a = —.
r

5. Simple Harmonic Motion (S.H.M.)

(a) Definition: Relation between acceleration and displacement is — 0%

given by a=—kx, where k is a positive constant. O¢———»°F

(i) k is usually rewritten as @, where @ >0 is called the angular frequency.

2

(ii) Consider a=%. The relation is changed to a 2" order ordinary differential
t

. d’x L .
equation i +@’x=0. The general solution is given by x= Acosat+ Bsin at , where
t

A and B are constants.

=0

1= T4 LT,
=712 O000000M0000000M0000000 (B
=374 (002000000000000000000000000 =

(iii) Initial condition:

If the object starts from the equilibrium position, then x = Bsin @t , where B#0.
If the object starts from the extreme position, then x = Acosa@t, where A#0.

(iv) Simple harmonic motion is isochronous, i.e. the period of S.H.M. is independent of

its amplitude, as shown in the general solutions.

(b) Example 1: Spring Mass System
(i) Horizontal System

Consider an object with mass m which is tied to a spring of force constant k along a horizontal

ground.
When the mass is displaced about its equilibrium position with displacement x,

by Hooke’s Law, force F =—kx

By Newton’s 2" Law, ma = —kx

a=- | bgssine@ =0

«— F
| BARRARAED

2 ’
Period T = L 2r % , which is independent of the amplitude of oscillation.
w

L= angular velocity =

=

2ok
m

If we consider the system starting from extreme position A,

x=Acoswt
dx .
Vv=—=—-wAsin ot
dt

Elastic Potential Energy U = %kxz =%kA2 cos® r



1 1 2.2 1 o
Kinetic Energy K = Emv2 = Emsz‘ sin® @r = — kA’ sin® ot

1 ) 1 . 1 .
Total Energy =U + K = EkA2 cos” +5kA2 sin® wt = EkA2 , which is a constant.

(ii) Vertical System

Consider an object with mass m which is tied to a spring of force

constant k vertically.

At equilibrium position, there is an extension e of the spring. - net Urstar
length

force =0, ..mg =ke . oo

When the mass is displaced downwards about its equilibrium position

with displacement x,
Net force: ma=mg —k(e+x) (taking downwards as positive)
ma =mg —ke — kx

ma =—kx

k L .
a=——2x, which is the same as the case of horizontal system.
m

(iii) Inclined System

Consider an object with mass m which is tied to a spring of force constant k along an inclined

plane with angle 6.
At equilibrium position, there is an extension e of the spring. *.* net force = 0,
~.mgsin @ = ke

When the mass is displaced downwards about its equilibrium position with displacement x,

Net force: ma =mg sin @ —k(e+ x) (taking downwards as positive)
ma =mg sin @ — ke —kx

ma = —kx

k L .
a =——2x, which is still the same as the case of horizontal system.
m

(c) Example 2: Simple Pendulum

The 2 forces acting on an object in simple pendulum are the gravitational force mg and the

tension 7. Let @ be the angle between the vertical and the string and / be the length of the string.
Consider radial component, mg cos@=T .
Net force along tangential direction: ma =—mg sin @

a=-gsin@

Arc length x=16

If 6 — 0, then sin @ = @, equivalently lgirr&% =1.

wemmeo)= ()

6. Damped Harmonic Motion (D.H.M.)

Consider a mass—spring system with mass m and force constant of the spring k. If there is a

. . d .
damping force F ocv,ie. F = —b;x , where b is a constant,
t

then net force = —kx — bﬁ

dt



2
By Newton’s 2™ Law, md—f=— —b@
dr dt
2
dx bdx k4.

d* mdt m

N

b k . . .
Let 2a =—, @ =—, so the characteristic equation of (*) is
m m

o’ +2a0+@* =0

x =A£—ﬂi
& +2aa+a’=d" - ; \/
(@+a)}=d*-a* P A AN s ¢
- 1 __\'X‘:'" \
re
- : r=-Ae™
- ! period }

a=—atNa -@

We consider the case of light damping, i.e. b is a small number such that @* > a”. Then the roots

of the characteristic equation are both complex.

The general solution of (*) is x= Ae ™ cos(tv@’ —a® +¢) , where A and ¢ are constants

determined by initial conditions.

For simplicity, consider the object at the extreme position initially, .. take ¢ =0.

sx=Ae “ cos(tN @’ —a?)

Period of the oscillation 7' = % , which is larger than S.H.M. without damping.

W —a

The amplitude of oscillation is affected by the damping factor e™ . Indeed the 2 graphs

x=%Ae™ form the envelopes of the graph of the D.H.M.

7. Gravitational Field M

F F
oum  @—>
r r r

m
-

(a) Newton’s Law of Gravitation: gravitational force F =

GM
P

(b) Gravitational field strength g is the gravitational force per unit mass, i.e. g =

3|

Equivalently, F =mg .

(c) Gravitational potential energy U is the work done by the gravitational force in moving a mass

m from infinity to r.

Work done on a mass by an infinitesimal displacement = F -dr = Fdrcos0° = Fdr

U=J.Fdr=IGA/2[mdr:*:_GMm} _ - GMm
r r r

Equivalently, F =d—U.
dr

o A - . . . U GM
(d) Gravitational potential is the gravitational potential energy per unit mass, i.e. V =—=—
m

or equivalently U =mV .

dU d(mV) dv .
= me =

Moreover, . F =—, , g =—,orequivalently V = | gdr .
dr & dr & dr a Y lg

The following figure shows the relationship between F, g, U and V.

ptt
GMm r -GMm
F= T < » U=
r r
U=mV
F=mg
_GM o 10 > v=_GM
8= r2 dv r
8§=—"-



(e) The approximation of gravitational potential energy near Earth surface can be obtained by the

following:

Let R be the radius of the Earth. Consider a mass m which is of height & above the Earth surface,

and h<<R.

GMm _ GMm _GMm( hj"

By first order approximation of Binomial Expansion, U = — GAI;Im [1—%]

GMm GMm
-—

R e h, where — GMim

U=~

is the gravitational potential energy on the Earth surface,
denoted it by U, .

GM

U :U0+7mh

Change in gravitational potential energy AU =U —-U = e mh=mgh

8. Rotational Motion of a Rigid Body

(a) Moment of Inertia

Consider a rigid body rotating in a constant angular velocity @ . The body is divided into small

mass m,, each with a distance 7, from the axis of rotation.

K.E. of a small mass = %m,v,Z = %m,.(ra),)2 = %a)2 (mr?)

K.E. of the rigid body = J.%wzrzdm = %wzjrzdm

Define moment of inertia / = J.rzdm

. K.E. of the rigid body = %Ia)2 , compared with a rigid body in linear motion K.E. = %mv2

Hence moment of inertia takes the role of mass in rotational motion.

(b) Example of moment of inertia

Consider a uniform rod of mass m, length L and linear density o :%

infinitesimal mass with infinitesimal length: dm = pdr
. . m m Rod about
moment of inertia [ = j r’dm= 'frzpdr = j rz(zjdr = zjrzdr T
(i) Rotating along an axis passing through its mid—point
L L L
2 2 372 3 2 i
1= [ Pdr =20 g = 2 L 2 2m Bl I=— ML
L= L3 L|3] 3L(8 12 12
2
(ii) Rotating along one end of the rod ]
2z
I= 3 ML
L 3k -
I=ﬂJ.r dr="110 = 3)_7mL
Ly L|3 3L 3
Reod about
end



[l. Electricity and Magnetism

1. Electric Field

(a) Electric force on a charge g by a fixed charge Q is given by

Qq F

F=
4reyr

(b) Electric field strength E by a fixed charge Q is

(c) Electric potential energy U is the work done by the electric force F in moving a charge ¢

from infinity to r.

If charges Q and g are of the same sign, the external force required to put the charge g from

infinity is opposite to the electric force. Mathematically, by scalar product

work done on a charge ¢ by an infinitesimal displacement = F -dr = Fdrcos180° = —Fdr

Work done to put the charge ¢ from infinity to a distance r from charge Q is given by

_—Q"J[—f‘]; Qg
4me,r

U= —I Fdr = —lfﬁngﬁ dr= [4;:50

Equivalently, F :—d—U.
dr

(d) Electric potential is the electric potential energy per unit test charge, i.e. V :g ) 0 .
q Angr

Equivalently U =¢V .

5 - (Coulomb’s Law) B p >

electric ~ force  per unit charge i.e. / /

F Q . — L —
E=—= - . Equivalently F =qE .

q A4ne,r”

Moreover, " F = —d—U , gE =— d(qv) , WE= —d—v , or equivalently V = —J Edr.
dr dr dr s

The following figure shows the relationship between F, E, U and V.

F=_9U
_ Qq P dr . U= &
dme,rt g dre,r
F=qgE U=qV
g=_9 _ > o 9
4me,r E= dv 4re,r
Todr

2. Circuit with internal resistance in battery

resistance r and equivalent resistance in the circuit R.

F_:
Let the electromotive force (e.m.f.) of a battery be V;, with internal
IH
W
e TR e

Vo
r+R

By Ohm’s Law, current [ =

2 2
Power consumed by the internal resistance P = I’r = Yo r= Vor -
r+R (r+R)
Consider the extremum of this power,

2 _ 2 2 _
PRI rQOARW) Vo o WR=D)
dr (r+R) (r+R)’ (r+R)’
When d—P:O, r=R.

dr

By first derivative test, P is max. when r =R.
14



2 2 2
Max. power consumed by the internal resistance P = WR _ VR _Vi ln[M] =t

(R+R) (2R’ 4R 0, ) RC
VO2 0 =t
On the other hand, the total power consumed F, = R =2P 1—-==¢RC
0 1
"Ii
Qo_ 1- e%
3. Capacitance )
t
Y = (]
Definition: Capacitance is the charge stored per unit voltage. C= v 0= Qo[l - eRC]
Charging a capacitor B B B N
/ :Q:QO[_EE][;IJ = gre Vo i _ g i
Consider a circuit with equivalent capacitance C and equivalent resistance R. The capacitor dr RC CR R
contains zero charge initially. ¢
: 0_0of, =
e X _X20|1_pkC [= _ pRC
Potential difference: & Ve= c c [1 ¢ ] V”[l ¢ ] v,
K : v,
e — 0
V0=VC+VR=Q+IR=Q+Rd—Q R = =
C C dt Vy =IR=1,R(e®¢) =V, ek
]
t
g _ 1 v _9\_Cv -0 Define the time constant be RC . 9
d R\ C RC
When t=5RC, Q=0Q,(1- )= 0.9930,, the capacitor is regarded as fully charged.
[de _ja
2 CV,—0 RC
0 ¢ 4. Electromagnetism
[le-0 [4}
- RC =
0 Q-0 0 (a) Magnetic Flux ¢ and Magnetic Field Strength B
_[ . - . .
[In(Q, - D)y =%C (i) p=B-A=BAcosf , where A is the area that the magnetic flux normal D= BAGEE
to area A
passing through, @ is the angle between Band A. g 4
—t B @ )
ln(QO—Q)—an():R—C - -—



(ii) magnetic flux linkage & = N¢, where N is the number of turns of a coil (ii) on a point charge

- . Isi Th itude of tic force F acti h ith
(iii) magnetic field strength B by Biot-Savart Law: B = .[dB = _[ %Sl?adl e magnitude of magnetic force F acting on a charge ¢ with  x  x  x Z’ XX
- velocity v by a magnetic field B is given by F =gvBsing. * X X X X X
T . . F
The direct 1 by FI ’s Left Hand Rule. XK X X} XX X
08} by a current carrying wire with distance r: B = Aol ¢ direction 1s also given by Hleming s Lelt Hand ule
27 B x x Ix==% x «x
In vector notation, F =qvXB. '
. o . H,NI
(I by N circular coils with radius R: B= ETH
(IIT) by a solenoid with n turns per unit length: B = ynl (c) Faraday’s Law of Electromagnetic Induction

When there is a change in magnetic field, an induced e.m.f. will be produced.

a r:d':‘::* ; Induced e.m.f. €=-N % , where N is the number of turns in a coil and ¢ is
I -~ r 111 t
] the magnetic flux.
7 n tums per 1
distance r i unit length
from current
(d) Application of Faraday’s Law:
(b) Magnetic Force (i) Induced e.m.f. of a moving conductor
(i) on current carrying wire . - . .
Suppose a conductor moves with a constant velocity v, perpendicular to a uniform
The magnitude of magnetic force F acting on a current carrying wire with current 1 and magnetic field B. . s ] . L -
length ¢ by a magnetic field B is given by F =Bllsin@ . The direction is given by dg d - — d * * . H * fy
ing’ e=—N—=-1—(B-A)=——(BA)
Fleming’s Left Hand Rule. dt dt dt < . . . .
:—Bi(ls)z—Bl£=—Blv T
dt dt

B (ii) Generator
In vector notation, F =/IXB.

17 18



Consider a coil with N turns and area A rotating with a constant angular velocity @ in a

uniform magnetic field B.

coll < axle

sip oS0 o

rings<
ek alternating e.m.f,

coll, Nturns

carbon aroa A side view
brushes

e=-NY - N4 B a)=-NL(BAcos6) =—NBAL (cos ax) = NBAwsin ax
dt dt dt dt

(iii) Search Coil

Search coil is used to measure a changing magnetic field at a certain point. Suppose the

changing magnetic field is produced by an a.c. signal, i.e. B = B, sin ax

By rotating the search coil to obtain the maximum signal so that B is perpendicular to the

coil, we have

e:—Nﬁfz—Nﬁxﬁib:—Nﬂxaﬂ:—Nnﬁxaﬁman:—NA&wamm
dt dt dt dt
Max. induced e.m.f. = NAB,@.

By measuring the max. induced e.m.f., we get the magnetic field strength B.

(e) Inductance

Definition: Inductance is the magnetic flux linkage per unit current. L=—

(compared with capacitance)

By Faraday’s Law, &= —Nﬂ =- (Ll
dt dt

When a current / passing through a solenoid is changed, there is an induced e.m.f. in the solenoid.

-+ for solenoid, ¢ = B-A=BAcos0°= (onl)A,

2
Inductance of a solenoid L = NT¢ = Nunid) = pynNA = "10177/4

1

In a LR circuit, when the switch is turned on, there is an increase in current across the solenoid,
hence a change in magnetic flux linkage. Therefore there will be an induced e.m.f. to oppose the

change, which is the voltage across the solenoid (the inductor).

V, =V, +V,
dl
I.R=L—+IR 1
0 dt i
Uy=DR _dl 1% l
L dt L
R

R
UM%—UE:—ZI

In(Z,—1)—1Inl, :—gt

20



I, 2T 20 |,
, n R ) sinat
It IL( _sm2a)T)
1, 2T 20
o 1} sin4r 19 \ / ' Time
L _to|p_ \
I1=1, l—e(E] Tor T 20 -4 sinwt—, /
-1
2
L
= o 2
L L
Ve =IR=1IR l—e(R] =V, l—e(k) » i,
** Trms \/E
VL
=t = V,
V,=V,-V,=V,-V, l—e&) =Ve(%J
Lo TR0 00 0 (b) Capacitive and Inductive Reactance
0 ! Consider an a.c. circuit with a capacitor,
V =V, sinat
5. Alternating Current
dQ d(Cv) d .
(a) Root-Mean-Square value of current I= ar = at =C u (Vy sinar) = CV @cos @x......(1)
. . 2r . .
Consider an a.c. I =1 sinar, where angular frequency = T & T is the period Let I, = CV,@, -V, = Io( R j
oC
17 17
2_ Ao, L2 2
L = T .([ Fdr= T .'; Iy sin” axdt Define capacitive reactance X, =—
IU2 f . V4
= ﬁ,‘.(l —cos2ax)dt Moreover, V =V, sin @t =V, cos| @t — 2 2)
0

Comparing (1) & (2), V lags I by %

21 22



Similarly, for an a.c. circuit with an inductor,
I=1Isinar.....(3)

dl d .
&€=—-L—=—-L—(I;sinax) =—LI @cos wt
dt dt

Voltage across the inductor to oppose the induced (or back) e.m.f. V =—& = LI j@cos ax

Let V, = I,(wL)

Define inductive reactance X, = @wL LRC
A
. 4
Moreover. V =V, cosax =V, sin| @ +— |....(4) Lo
A o
J ¢
b2
Comparing (3) & (4), Vleads I by —.
paring (3) & (4) vy e I
So we have the phasor model for LCR circuit as shown in the figure. Y

(c) Parallel LC circuit

Consider an inductor and a charged capacitor with charge Q,. Assume that there is no external

voltage and no resistance.

Potential difference in the circuit: c - ,J
V,+V,.=0 :_____“‘-': L
L a + Q =0 7.
dr C
o 1
~+—0=0
dt  LC 2

23

. 1 . . . . § )
Define @*=—— . The solution of the 2™ order differential equation d 2Q=—a)'Q is
t
Q=Q,cosax (initial condition Q =Q, is applied).
d’Q 5 d’x 8 . , ) _
Moreover, compare i =—w Q and ?:—a) x , this is a simple harmonic motion. The

“oscillating” component is the charge. The phenomenon is also called electrical oscillation.

(d) LCR circuit

Consider an a.c. circuit with an inductor, a resistor and a capacitor

Potential difference in the circuit: R
PAVAVAV,N
V,+ Ve +V. =V
1403} oG
Lﬂ+lR+g=Vosinwt L
dt c T ——
d.zQ E@‘FLQ:&SHI([I
dt Ld LC L

This is a non-homogeneous 2" order differential equation. The complementary solution

.. . R 1 )
Q. depends on the roots of the characteristic equation o’ +ZG+E =0.....(**) and the
particular solution Q, takes the form Q(c, coskQ + ¢, sinkQ) (for complex roots in (**)) or the

form (c, cos kQ + c, sin kQ) (for real roots in (**)).

I1l. Waves

1. Beats

Consider 2 waves with same amplitude A but slightly different frequencies f,, f,
24



s, = Asinajt s, = Asin w,t where @, =27f, and w, = 27f,
Superposition of the 2 waves:

(@, + @)t cos (@, —26()2)[

s =5, +5, = A(sin @t +sin @,t) = 2Asin

Where | @, — w, | has a smaller frequency, hence larger period.

Define | f, — f, | as the beat frequency.

Add
Resultant
_hith
: 2
1
l— onebeat T = -

1~ /3

2. Law of Reflection

When light rays travel from A to B through a reflective surface at point C, it follows from
Fermat’s Principle of Least Time that total distance travelled should be minimum. First of all,
reflect point B about the surface to B'. The required distance is the same as AC+CB'. By

Triangular Inequality, the total length is shortest when A, C and B' are collinear.

~i=6 (vert. opp. £s) A

. tan ZBCD = @ = 8D
CD

=tan ZB'CD

I P

25

. ZBCD = ZB'CD

r=90°-ZBCD =90°-ZB'CD =6

3. Law of Refraction (Snell’s Law)

It follows again from Fermat’s Principle of Least Action.

In the figure, a light ray passes through medium 1 with velocity v, m/s from a fixed point P,
which is @ m above the water surface. The light ray reaches a point O on the boundary. Then it
passes through the medium 2 with velocity v, m/s to a fixed point Q, which is b m below the
water surface. R and S are 2 points on the boundary which are closest to points P and Q

respectively. Let the angle of incidence and angle of refraction be fand a respectively.
RS =0OR+0S =atan@+btana

i(RS) :i(atan9+btana)
do dée

P & Q are fixed points, .. RS is constant. medium 1

medium 2

.'.i(atan0+btana)=0
dé

asec’ O +bsec’ Utd—a=0
dée

da _ asec’
dé  bsec’a

Let T seconds be the time to travel from P to Q via O.

a b a b
T= v+ ——|+v, =—secH+—seca
cosé cosa 12 v,

26



11 1
dl:isec&tan0+£secatan ad—a ...... 2) By lens formula, —+—=—.
e v, v, de u v f

dT _a b asec’ 0 1 1.1
Put (1) in (2 — =—secftan@+—secatana| — I
() mn(2) do v, v, 0{ bseczaj v [ ou
1 —
a asec’ ftana —=2=L
=—secftan - ——— v o uf
v v, sec
1)
asin@ asina V= if
== - "u—
v,cos’@ v,cos’ 0
Let y cm be the distance between the object and the screen.
__a (sin@ sina
cos’ @\ v, v, y=u+v
When 7 is minimum, ar_ , s g_sina y=u LY
do 2 v, u-f
Lsing="sina yz(uz—uf)+uf
2 123 u=f
n,sin @ =n,sin e
y= u—f
where n =S is the refractive index of a medium. )
v dy _ (= )Qu)—u (D
du w-f)
dy 2u’ = 2uf —u’
4. Convex Lens du w—f)?
An object is placed at a distance of u cm in front of a dy u*—2uf
convex lens with constant focal length f cm. A screen is du  (u-f)
placed v cm at another side of the lens so that a real dy u(u-2f)
image is formed. Find the minimum distance between the du  (u-f)

ObjCCt and the screen in terms Off dy
When——O,u—Z or 0 (rej.

Method 1 By 1% derivative test, y is a minimum when u=2f .

In order to obtain real image with finite image distance, u > f .
27 28
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Minimum distance =2f +2f =4f .

=2f.

It is the situation when the object and the image are of the same size.

Method 2
Let u = xf , where x is a real number.

As the image is real, x>1.

By lens formula, 1 +l = 1 .
u v

f

1 1 1
L
¥ ov f
r_r.r
v f X
1_x-1
v_xf

X
)

The distance between the object and the screen is u+v

_ L
_xf+x—1f

Let y=x—,where x>1.
x—1

29

dy 2x(x—D-x*(1)
dx (x—-1)7

X -2x
(x=1?

_x(x=2)
(-1’

d .
When —y=0, x=2 or 0 (rej.)
dx
By 1* derivative test, y is a minimum when x=2.
.. the distance is minimum when u=2f,i.e. when v=2f.
min. distance =2f +2f =4f .

It is the situation when the object and the image are of the same size.

[V. Matter

1. Gas

Ideal gas law: PV =nRT

Work done by the gas in an isothermal process, i.e. constant temperature:

W.D. = dex = j% - Adx

frictionless piston

" nRT
- dev = J,Tdv oo ;

=nRT[InV]} = nRT(InV, —InV,) —

=nRT In Y.
VZ
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2. Radioactive Decay

Let N be the number of nuclei. The rate of decay of nuclei i]—N o< N.
t

Moreover, N should be decreasing.

(Z—N =—kN , where k is called the decay constant.
t
N t
N _ [ar
Ny N 0
[(n N1y, =—kt

In—=—kt
0

N_

NO

N =Ny ™

Let ¢, be the half life.

2
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Discussion
1. Mathematics Background in Secondary School Physics curriculum
(a) Trigonometry
Radian Measure, Arc Length & Area of Sectors,
Compound Angle Formula, Double Angle Formula, Sum—and-Product Formula
(b) Vectors
Operations of Vectors, Scalar and Vector Products
(c) Limits

Intuitive concepts of Limits, basic calculations of limits (up to HKCEE A. Math or
HKDSE Math Module)

(d) Differentiation

Concepts of Derivatives from Limits, calculations of derivatives (up to HKDSE Math

Module 2 level)
(e) Integration

Indefinite and definite integration (concepts and calculations up to HKDSE Math Module
2 level)

(f) Complex Numbers

Standard Form & Polar Form, Operations of Complex Numbers
(g) Power Series

Taylor’s Series of Elementary Functions
(h) Ordinary Differential Equations

1% order: Separable Variables
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2" order: Homogeneous and Non-Homogeneous Equations, Concept of Complimentary

and Particular Solutions, Linear with Constant Coefficients

2. Advantages of Incorporating Mathematics in Physics Curriculum

(a) Some quantitative results which can’t purely determined by Physical Laws (or by merely

Physics Curriculum) can be explained with the help of Mathematics.

e.g. half life of a radioactive nuclei, the time variations of voltage, current and charge in RC, LR

and LRC circuit.
(b) Physical Laws can be written in a more succinct way.
e.g. In electromagnetic induction, the direction of magnetic force/induced current is determined

by Fleming’s Left/Right Hand Rule, and magnitude by formula F = Bllsin8 . However, the

direction and magnitude in both phenomena can be determined by F=(IXB.
(c) Mathematical knowledge comes in a more natural way.

e.g. The definitions of scalar and vector products, without the direct application in mechanics

and electromagnetism in Physics, are rather strange.
(d) Compare and contrast Mathematics and Physics

Currently a lot of students regard Mathematics and Physics as nearly the same subject, mainly
due to lots of computations in Physics problems. Indeed students should be able to realize that 2
subjects, though inter—related in many aspects, still have their own characteristics. Mathematics
starts from several definitions, axioms and then the whole structure with Theorems are
constructed. Physics, however, starts from natural phenomenon and several simple laws are
concluded to explain them. In some cases, quantitative laws are written, which is mathematical,

yet they are for modeling the real world, themselves can’t be regarded as definitions nor axioms.

3. Difficulties in “Mathematical Physics”
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(a) Inevitably students are required to have a good grasp of the knowledge in Mathematics in
order to appreciate the application in Physics. Yet under current situation, it is not compulsory
for students taking Physics as an elective subject in HKDSE to also take either Module 1 or 2 in

Mathematics.

(b) The sequence in teaching content should be revised so as to make the curriculum flow more
natural. For example, in past HKCEE, students taking A. Math learnt Calculus during F.4 second

term. Relevant topics in Physics should be put after that.

(c) The HKDSE syllabus has been under revised and some parts in the curriculum in Modules
are removed starting from 2016 HKDSE. If further changes are made, the relevant part in
Physics curriculum relying on the removed portion in Mathematics curriculum will encounter

problems.
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