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Sir

Miss 



Suppose the temperature 
on a rectangular slab of 
metal is given by  
     T(x,y) =k (x2 + y2) 
where k is a constant,  
What is T(r,θ) ?  

Vector Calculus Bridge Project 
Tevian Dray and  Corinne Manogue 
Oregon State University 
http://math.oregonstate.edu/bridge/ 

a physicist’s answer:  
        T(r,θ)=kr2 
a mathematician’s answer : 
        T(r,θ)=k (r2 + θ2) 
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 Cos (π/4) 
    = 0.7071067…  

Boeing Airplanes 



PProjectile  

 http://ggbtu.be/m1082291 

 : 
 



M. K. Siu, “Zhi yì xíng nán (knowing is easy and doing is 
difficult)” or vice versa? ----- A Chinese mathematician’s 
observation on HPM (History and Pedagogy of 
Mathematics) activities, in The First Sourcebook on Asian 
Research in Mathematics Education: China, Korea, 
Singapore, Japan, Malaysia and India, (Eds.) B. Sriraman, J. 
Cai, K. Lee, L. Fan, Y. Shimuzu, C. Lim, & K. Subramaniam, 
Information Age Publishing, 2015 [Chinese translation by 
F.K. Siu] 

  

Albert Einstein, Leopold 
Infeld,  The Evolution of 
Physics : The Growth of 
Ideas from Early Concepts 
to Relativity and Quanta 
(1938) 



Disciplined and 
Critical Thinking 

(precision in 
mathematics as 
well as in words) 

CCuriosity 

Imagination 



Five 
Phases 

Thales 
(c.625-547 B.C.) 

Water 

Anaximenes 
(c.585-525 B.C.) 

Air 
 

Heraclitus 
(c.544-483 B.C.) 

Fire 

     Empedocles 
        (c.490-430 B.C.)  
 
      
  Four Elements 

    Plato  
      (c.427-347 B.C.) 
 
    Aristotle 
      (c.384-322 B,C.) 

Four great 
thoughts of 
Chan [Zen] 

Circle-Triangle-Square Courtyard, 
Kenninji Temple ( ),  
Kyoto, Japan . 

(water) 
 

(fire) 

(earth)  

(air) 



Empedocles (5th century B.C.) 
Four Elements 
Plato: Timaeus 

Polyhedral 
Hypotesis 
(1596) 

Johannes Kepler,  
Mysterium Cosmographicum 
(1596)  

 
Johannes Kepler, 
Astronomia Nova (1609), 
Harmonices Mundi (1619)  

Planetary 
Chord (1599) 



Aphorisms [Book One]  LXXXII 
 
There remains simple 
experience which, if taken 
as it comes, is called 
accident; if sought for, 
experiment. …..  But the  
true method of experience, 
on the contrary, first lights 
the candle, and then by 
means of the candle shows 
the way; commencing as it 
does with experience  
duly ordered and  
digested, not bungling  
or erratic, and from it  
educing axioms, and  
from established  
axioms again new 
experiments; ….. 

F. Bacon, Novum 
Organum, 1620 

Aphorisms [Book One]  XCV 
 
Those who have handled 
sciences have been either 
men of experiment or men of 
dogmas. The men of 
experiment are like the ant, 
they only collect and use; 
the reasoners resemble 
spiders, who make cobwebs 
out of their own substance. 
But the bee takes a middle 
course; it gathers its 
material from the  
flowers of the garden  
and of the field, but 
transforms and  
digests it by a power  
of its own. ….. 

F. Bacon, Novum 
Organum, 1620 



 
Sunzi Suanjing 
[Master Sun’s 
Mathematical 
Manual] 

 

“ Philosophy is written in this grand 
book  , the universe, which stands 
continually open to our gaze.  But the 
book  cannot be understood unless one 
first learns to comprehend the language 
and reads the letters  in which it is 
composed .  It is written in the language 
of mathematics , and its characters are 
triangles, circles, and other geometric 
figures without which it is humanly 
impossible to understand a single word 
of it; without these, one wanders about 
in a dark labyrinth.”  

Il  Saggiatore (The Assayer) 
Letter to the Illustrious and 
Very Reverend Don Virginio 
Cesarini from Galileo Galilei 
(1623)  



Galileo Galilei  
(1564-1642) 
 

HOW (MUCH) 

rather than WHY? 
 
[a quantitative rather 
than a qualitative 
description] 

Unification of all sciences by reason 
MMethod: (a)  accept only what is so clear in one’s  
mind as to exclude any doubt 
                (b)  divide difficulties into smaller ones 
                (c)   reason from simple to complex  
                (d)  check that nothing is omitted 
CARTESIANISM  leading to       
WORLD  MATHEMATIZATION                    

René Descartes 
DISCOURSE ON THE 
METHOD PROPERLY 
GUIDING THE REASON IN 
THE SEARCH OF TRUTH 
IN THE SCIENCES (1637) 

Cogito, ergo sum    
(I think, therefore    
I am) 



Observation  
&  

Experiment 

Laws 
& 

Theories 

Explanation 
& 

Prediction 

  Induction             deduction 

Aristotle (4th century B.C.) 

Medieval 
Scholasticism 
 
(12th to 15th centuries) 

Baconian View (1620) 
Novum Organum 
(New Method) 
 
(17th century) 

Observation  
&  

Experiment 

Laws 
& 

Theories 

Explanation 
& 

Prediction 

Galileo Galilei 
Dialogo dei massimi sistemi 
del mondo (Dialogue Concerning 
the Two Chief World Systems), 1632 
Discorsi e dimonstrazioni 
matematiche intorno a 
due nuove scienze 
(Discourse and Mathematical 
Demonstrations Concerning 
Two New Sciences), 1638  



Cosmology in ancient Greece 
(2-sphere cosmos) 
Source: Petrus Apianus, Cosmographia (1524) 



Galileo Galilei, Discourse and 
Mathematical Demonstration 
Concerning Two New Sciences (1638) 

Is this a truly  
mathematical explanation of a 
physical phenomenon ? 



If ggravitational mass is to be identified 
with inertial mass, then acceleration 
is to be identified with intensity of the 
gravitation. There is a reference system 
in which the intensity of the gravitation 
vanishes (locally)! 

Any deeper 
reason 
behind? 

This led to  the 

Theory of General 

Relativity. 



Experiment with a pendulum when the 
string strikes a nail  

Experiment with an inclined plane 
                                   tthought experiment  

“Furthermore we may remark that any  
velocity once imparted to a moving  
body will be rigidly maintained as long  
as the external causes of acceleration or  
retardation are removed, a condition  
which is found only on horizontal planes.  
[…]it follows that motion along a horizontal  
plane is perpetual  […]”         Galileo Galilei    

Law of 
Inertia 
 
 
 
 
Newton’s 
First Law 
of Motion 



               Nicolas Copernicus (1473-1543) 

DDe revolutionibus orbium coelestium (1543)  
(On the Revolutions of the Heavenly Spheres) 



Tycho Brahe 
working in his 
observatory 
at Uraniborg, 
Denmark. 

  Tycho Brahe 
  (1546-1601) 

Introduction by Herbert Butterfield  
 
“No field of thought can be properly 
laid out by men who are merely 
measuring with a ruler. Sections of 
history are liable to be transformed — 
or, even where not transformed, 
greatly vivified — by an imagination 
that comes, sweeping like a 
                searchlight, from outside the 
                historical profession itself.” 

Arthur Koestler, The Sleepwalkers : 
A History of Man’s Changing Vision 
of the Universe (1959)  

Herbert Butterfield 
(1900-1979) 

Arthur Koestler 
(1905-1983) 



“The progress of Science is 
generally regarded as a kind 
of clean, rational advance 
along a straight ascending 
line; in fact, it has followed a 
zig-zag course, at times 
almost more bewildering 
than the evolution of 
political thought.”  

Arthur Koestler, The Sleepwalkers : 
A History of Man’s Changing Vision 
of the Universe (1959)  

Arthur Koestler 
(1905-1983) 

“The history of cosmic theories, 
in particular, may without 
exaggeration be called a history 
of collective obsessions and 
controlled schizophrenias, and 
the manner in which some of  
the most important individual 
discoveries were arrived at 
reminds one more of a 
sleepwalker’s  
performance than 
             an electronic  
             brain’s.”  

Arthur Koestler, The Sleepwalkers : 
A History of Man’s Changing Vision 
of the Universe (1959)  

Arthur Koestler 
(1905-1983) 



Johannes Kepler (1571-1630) 

Astronomia Nova, 1609 



Philosophiae Naturalis Principia Mathematica 
(Mathematical Principles of Natural Philosophy)  
by Isaac Newton, 1687. 

Isaac Newton  
(1642-1727) Newton’s Law of Universal Gravitation 



David L. Goodstein, Judith R. 
Goodstein, Feynman’s Lost Lecture: 
The Motion of Planets Around the 
Sun, Vintage Books, 1997. 
 
(This is a reconstructed account of a 
lecture given by Richard Feynman on 
March 13, 1964.) 

Richard Phillips 
Feynman 
(1918-1988) 



Study on 
heat 
conduction 

Superposition of 
two waves 

Jean Baptiste Joseph 
Fourier (1768-1830) 



� J. C. Maxwell, A dynamical theory of the 
electromagnetic field, Philosophical 
Transactions of the Royal Society of 
London, 155, 1865, 459-512. 
 

� J. C. Maxwell, On a method of making a 
direct comparison of electrostatic with 
electromagnetic force; with a note on 
the electromagnetic theory of light, 
Philosophical Transactions of the Royal 
Society of London, 158, 1868, 643-657. 
 

� J. C. Maxwell, A Treatise on Electricity 
and Magnetism , Oxford University Press, 
1873.  

James Clerk Maxwell 
(1831-1879) 

Maxwell’s 
Equations 

Electromagnetic Field 

S1 
Basic Science 
 
 

S2
Research & Development 
 
 

T
Technology 
 
 
 

Would traditional Chinese culture and thinking inhibit the 
development of science? 
An interview with Academician Wang Shou-guan, compiled 
by Sun Xiao-chun and Chu Shan-shan, 
Science and Culture Review,  8 (2) (2011), 97-116.   
 



James Clerk Maxwell 
 (1831-1879)                           

Heinrich Rudolf Hertz 
(1875-1894) 

Guglielmo Marconi 
(1874-1937) 

S1 

S2 

T 

1865 

1886 

1896 



 Galileo Galilei 
 (1564-1642) 

Isaac Newton 
(1642-1727) 

Albert Einstein 
(1879-1955) 

Stephen Hawking 
(1942- ) 

Stephen Hawking’s 
visit to Hong Kong 
[Ming Pao, 16.06.06]  

Story of 
Relativity 

Quantum Mechanics 



“I am now exclusively occupied 
with the problem of gravitation, 
and hope, with the help of a 
local mathematician friend, to 
overcome all the difficulties. 
One thing is certain, however, 
that never in my life have I been 
quite so tormented.  A great 
respect for mathematicians has 
been instilled within me, the 
subtler aspects of which, in my 
stupidity, I regarded until now 
as pure luxury.  Against this 
problem, the original problem of 
the theory of relativity is child’s 
play.” 

LLetter from Albert Einstein 
to a colleague in 1912. 

“..... It remains now to examine the question 
how, in what degree and to what extent these 
assumptions are guaranteed by experience.  
... Either then the actual things forming the 
groundwork of a space must constitute a 
discrete manifold, or else the basis of metric 
relation must be sought for outside that 
actuality, in colligating forces that operate 
upon it. 
... This path leads out into the domain 
of another science, into the realm of 
physics, into which the nature of this 
present occasion forbids us to 
penetrate.” 
Georg Friedrich Bernhard Riemann 
Űber die Hypothesen, welche der Geometrie zu Grunde 
liegen (On the Hypotheses Which Lie at the Foundations 
of Geometry), 1854 

C.F. Gauss (1777-1855) G.F.B. Riemann (1826-1866) 



Hilbert’s Sixth Problem:  
“To treat in the same manner, 
by means of axioms, those 
physical sciences in which 
mathematics plays an 
important part; […]” 
 
 

“[…] through a peculiar,  
pre-established harmony, it  
has been shown that by trying 
logically to elaborate the existing 
edifice of mathematics, one is 
directed on exactly the same path 
as by having responded to 
questions arising from the facts  
of physics and astronomy.”  

Hermann  
Minkowski 
(1864-1909) 

David  
Hilbert 
(1862-1943) 

D. Hilbert, Grundlagen der Geometrie (1899) 
D. Hilbert, Grundlagen der Physik (1915) 
 

Georg-August-Universität 
Göttingen, founded in 1734. 

Paul Adrien Maurice Dirac 
(1902-1984) 
Nobel Laureate in Physics 1933 

(1928) 



The unreasonable effectiveness of 
mathematics in the natural sciences  
Richard Courant Lecture in 
Mathematical Sciences delivered by 
Eugene Wigner at New York University 
on May 11, 1959, published in 
Communications in Pure and applied 
Mathematics, 13 (1) (1960), 1-14.  

Eugene Paul Wigner 
(1902-1995) 
Nobel Laureate  
in Physics 1963 

Max Tegmark,  
Our Mathematical  

Universe: My Quest for the 
Ultimate Nature of Reality, 

2014. 

Physical 
reality is a 
mathematical 
structure ! 



Robert Mills  (1927-1999) 
Space, Time and Quanta:  
An Introduction to 
Contemporary Physics  
(1994), p.337. 

C.N. Yang and Robert Mills at Stony Brook in 1999  

End of Part I 



Michael Nelkon,  
Principles of Physics,  
8th Edition, 1990; 
first published, 1951. 

Michael Nelkon,  
Principles of Physics,  
8th Edition, 1990; 
first published, 1951. 



Michael Nelkon  
and Philip Parker, 

Advanced Level Physics, 
Heinemann, London, 

1958. 

One day I asked myself the 
question: “What is energy?” 
I could not give a satisfying 
answer for myself. I doubted 
whether I had in me a “sense  
of physics” or not. I wondered 
whether I liked physics only 
because I liked its mathematics. 

Many years later, after 
teaching for decades, …   

AA personal anecdote : 
What made me choose 
mathematics instead of 
physics in graduate 
school ?   



 

Yvette Kosmann-Schwarzbach, The Noether 
Theorems: Invariance and Conservation Laws 
in the Twentieth Century, 2011; original 
edition in French, 2006.  

Emmy Noether 
(1882-1935) 

E. Noether, Invariante Variationsprobleme, 
Nachrichten von der Königlichen Gesellschaft 
der Wissenschaften zu Göttingen, Mathematisch-
physikalische Klasse (1918), 235-257. 

Symmetry of a 
physical system 
     Conservation 
      Law  
 
              

(Simple 
Harmonic Motion)  

F = - kx 



This is not possible! 
(Why?) 

Does this curve ring a bell? 
How does x varies with t ? 

AA lesson from optics 
� Euclid in his Optics (c. 300 

B.C.E.) reduced the study of 
optics to geometry by observing 
that light propagates in a 
straight line.  
 

� Heron (c. 100 C.E.) introduced 
the Shortest Path Principle. 
 

� Fermat (17th century) introduced 
the Quickest Path Principle, 
with which he explained the 
phenomenon of both reflection 
and refraction at one stroke as a 
problem on finding minimum.  
(In solving this problem, Fermat 
invented differential calculus.) 



Principle of Least Action 
 
 

 

 

 

 

 

 

 

 

 

AQ + BQ = A’Q + BQ 

                 > A’B = A’P + BP 

                            = AP + BP. 

(Gottfried Leibniz, Leonhard Euler, Pierre 
Louis Maupertuis, 18th century) 

Fermat’s Principle: Light travels 
between two given points along 
the path of shortest time. 
 

Or, you can locate the point P that yields 
a minimum by using the standard method 
of calculus, which is not as fast.  

Principle of Least Action 
 
 

 

 

 

 

 

 

 

 

 

AQ + BQ = A’Q + BQ 

                 > A’B = A’P + BP 

                            = AP + BP. 

(Gottfried Leibniz, Leonhard Euler, Pierre 
Louis Maupertuis, 18th century) 

Fermat’s Principle: Light travels 
between two given points along 
the path of shortest time. 
 

A similar reasoning goes for the 
phenomenon of refraction (Snell’s 
Law of refraction).  



Willebrod Snellius 
[known in the 
English-speaking 
world as Snell] 
(1580-1626) 

Snell’s Law of the 
refraction of light 

Snell’s Law 
of the 
refraction 
of light 



Christiaan Huygens 
(1629-1695) 

Christiaan Huygens,  
Traité de la Lumière (1678)  BC/v1 = AE/v2 ,  

that is,  
ACsinθ1/v1 = ACsinθ2/v2. 
Hence, 
   sinθ1/sinθ2 = v1/v2. 



This implies that v1 < v2 , that is, light  
travels faster in water than in air!  
In 1862 Léon Foucault verified by his 
experiment that the opposite is true.      

v1 sin θ1 = v2  sin θ2 , 
so  sin θ1/sin θ2 = v2 /v1 . 
 

v1 sin θ1 = v1  sin θ2 , 
so  sin θ1 = sin θ2, or θ1 = θ2 . 
 

 Newton’s Corpuscular 
 Model (around 1660) 

Reflection of 
light 

Refraction 
of light 

Christiaan Huygens 
(1629-1695) 
Wave Theory 
of Light 

 
   Isaac Newton 
   (1642-1727) 
 Particle Theory 
 of Light 

Thomas Young                      Augustin Jean Fresnel 
(1773-1829)                            (1788-1827) 
Interference and Diffraction of 
Light as a Wave  
 
 



Wave-Particle Duality 

A mechanical 
model (à la 
Pólya) to see  
when  
  AX/v1+XB/v2  
iis a minimum? 

At equilibrium the potential energy 
is a minimum, so m1h1+m2h2 is a 
minimum, so m1 AP1+m2 BP2 is a 
maximum, so m1 AX+m2 XB is a 
minimum. 
Put m1 = 1/v1 and m2 = 1/v2, we 
have AX/v1 + XB/v2 is a minimum. 
At equilibrium we also have  
m1 sin θ1 = m2 sin θ2, that is,  
 

        sin θ1/sin θ2 = v1/v2  . 
  
    



By Ptolemy’s Theorem we have  
         AX • BT + AT • XB = AB • XT, 
and     AY • BT + AT • YB > AB • YT . 
Hence, AX • BT + AT • XB < AY • BT + AT • YB 
because XT < YT   (#) . 
But  BT = 2R sinθ2  and AT = 2R sinθ1  where  
R is the radius of the circle AXB  (Why?) 
Hence,       AT/BT = sin θ1/ sinθ2 = v1/v2 . 
Substitute into  (#) , we have  
           AX+XB•v1/v2 < AY+YB•v1/v2 , 
or    AX/v1 + XB/v2 <  AY/v1 + YB/v2 .   

The vertical line intersects the circle AXB 
at T.  X is located on the horizontal line PQ 
such that  sin θ1/ sinθ2 = v1/v2 .  
We want to show that 
              AX/v1+XB/v2 < AY/v1 + YB/v2 .    

AA short enrichment 
course/workshop in ten 

three-hour  sessions was 
conducted each year from 
2006 to 2011 at HKU for  

youngsters about to 
embark on their 

undergraduate study. It 
tried to integrate the two 
subjects mathematics 

and physics with a 
historical perspective, to 

show how the two subjects 
are intimately interwoven. 



The underlying theme would be 
the role and evolution of 
mmathematics (mainly 

calculus, with related topics in 
linear algebra and geometry) in 

understanding the physical 
world, from the era of Isaac 

Newton’s mechanics to that of 
James Clerk Maxwell’s 

electromagnetism and possibly 
beyond, to that of Albert 

Einstein’s relativity.  In other 
words it tries to tell the story 
of triumph in mathematics 

and physics over the past four 
centuries.  The physics would 

provide both the sources of 
motivation and the 

applications.   

4th century 
B.C. 

Physical 
view of 
Aristotle 

Euclidean 
geometry 

Many 
centuries 
in between 

Geometry 
(area/volume) 
Algebra 
(equations) 

17th  
century 

Physical 
view of 
Copernicus, 
Kepler, 
Galileo, 
Newton 

Calculus 
(functions ― 
polynomial, 
rational, 
trigonometric, 
logarithmic and 
exponential) 



18th 
century 

Wave and particle Differential 
equations 
Fourier 
analysis 

19th 
century 

Theory of 
electromagnetism 
(Maxwell’s 
equations) 

Stokes’ 
Theorem 
(Fundamental 
Theorem of 
Calculus) 

20th 
century 

Special and 
general theory of 
relativity, 
quantum 
mechanics 

Non-Euclidean 
geometries of 
spacetime, 
probability 
theory 

Problem 2 in Tutorial 1 
 

A ball is dropped at a point of 
height H from the ground. 
Suppose every time the ball 
rebounds its velocity is 3/4 of 
that with which it hits the 
ground.  
Discuss the subsequent 
motion of the ball. (Will the 
ball bounce forever? What is 
the total distance the ball will 
travel?) 



Motion in a straight line with 
uniform acceleration 

What is the distance s covered in time t ? 

Eliminating t we obtain 



t (sec) s (cm) 
  0   0 (490 – 0)/1 = 490 

  0.1   49 (490 – 49)/0.9 = 490 

  0.5   122.5 (490 – 122.5)/0.5 = 735 

    �      �      � 

  0.9   396.9 (490 – 396.9)/0.1 = 931 

  0.95   442.23 (490 – 442.23)/0.05 = 955.4 

    �      �      � 

  0.99   480.25 (490 – 480.25)/0.01 = 975 

  0.995   485.11 (490 – 485.11)/0.005 = 978 

  0.999   489.02 (490 – 489.02)/0.001 = 980 

    �      � 

   1   490 

FFree fall 
)cm./sec.(

1
 )()1(  velocity Average

t
tss

�
�

Instantaneous velocity 

at t = 1 is 980 cm./sec. 





Michael Spivak, The Hitchhiker’s 
Guide to Calculus (1995) 

Otto Toeplitz, The Calculus: A 
Genetic Approach (1963) 

Calculus,differential 
equation and vector 
field — Chapter Two 
in the video CHAOS 

http://www.chaos-math.org/en/film 

produced by Étienne 
Ghys, Jos Leys and 
Aurélien Alvarez 



DIFFERENTIATION 

1-dimensional case 2-dimensional case 



1-dimensional case 2-dimensional case 

RATE OF CHANGE 

DIFFERENTIAL EQUATION 
= an equation involving derivatives 
  (partial derivatives) of various orders 



  Compare with lines of force of   
  Faraday, notion of field of Maxwell in 
  physics, integral curves in mathematics. 

Bridget Riley : Straight Curves 
(1963) 

INTEGRATION 
“summation” by going to the limit (a global property) 
One example: Knowing the shape and the density 
distribution f of an object, calculate its mass. 

Case 2: Plane lamina 

Case 3: Solid 

Case 4: Curling wire 

Case 5: Curved lamina 

Case 1: Straight line 



This particular 
differential equation  

comes up in 
numerous instances, 
whenever some sort 
of oscillation occurs.  

 Simple Harmonic Motion 

comes up in 
numerous instances, 
whenever the rate of 
change of a quantity 
is proportional to the 

quantity itself.  

This particular 
differential equation  

Exponential growth 



 

 

 
 



HARMONIES IN NATURE: A DIALOGUE
BETWEEN MATHEMATICS AND PHYSICS

Man-Keung SIU
Department of Mathematics
The University of Hong Kong

Pokfulam, Hong Kong
mathsiu@hkucc.hku.hk

ABSTRACT

The customary practice in school to teach mathematics and physics as two separate subjects

has its grounds. However, such a practice deprives students of the opportunity to see how the

two subjects are intimately interwoven. This paper discusses the design and implementation

of an enrichment course for school pupils in senior secondary school who are about to embark

on their undergraduate study. The course tries to integrate the two subjects with a historical

perspective.

1 Why is an enrichment course on mathematics-physics de-
signed?

In school it is a customary practice to teach mathematics and physics as two separate
subjects. In fact, mathematics is taught throughout the school years from primary
school to secondary school, while physics, as a full subject on its own, usually starts in
senior secondary school. This usual practice of teaching mathematics and physics as two
separate subjects has its grounds. To go deep into either subject one needs to spend at
least a certain amount of class hours, and to really understand physics one needs to have
a sufficiently prepared background in mathematics. However, such a practice deprives
students of the opportunity to see how the two subjects are intimately interwoven.
Indeed, in past history there was no clear-cut distinction between a scientist, not to
mention so specific as a physicist, and a mathematician.

Guided by this thought we try to design an enrichment course for school pupils in
senior secondary school, who are about to embark on their undergraduate study in two
to three years’ time, that tries to integrate the two subjects with a historical perspec-
tive. Conducting it as an enrichment course, we are free from an examination-oriented
teaching-learning environment and have much more flexibility with the content. Admit-
tedly, this is not exactly the same as the normal classroom situation with the constraint
imposed by an official syllabus and the pressure exerted by a public examination. How-
ever, just like building a mathematical model, we like to explore what happens if we
can have a bit more freedom to do things in a way we feel is nearer to our ideal.

Albert Einstein and Leopold Infeld sum up the situation succinctly, “In the whole
history of science from Greek philosophy to modern physics there have been constant
attempts to reduce the apparent complexity of natural phenomena to some simple fun-
damental ideas and relations. This is the underlying principle of all natural philosophy.”
[Einstein & Infeld, 1938]. Such a process makes demand on one’s curiosity and imag-
ination, but at the same time requires disciplined and critical thinking. Precision in
mathematics as well as in words is called for. Galileo Galilei already referred to mathe-
matics as the language of science in his I� Saggiatore (The Assayer) of 1623, “Philosophy

1

is written in this grand book — I mean the universe — which stands continually open
to our gaze, but it cannot be understood unless one first learns to comprehend the lan-
guage and interpret the characters in which it is written. It is written in the language
of mathematics, and its characters are triangles, circles, and other geometric figures,
without which it is humanly impossible to understand a single word of it; without these,
one is wandering about in a dark labyrinth.”

By promoting this view Galileo made a significant step forward in switching the
focus from trying to answer “why” to trying to answer “how (much)”, that is, from a
qualitative aspect to a quantitative aspect. In the Eastern world a similar sentiment
was expressed by many authors of ancient classics that may sound like bordering on
the mystical side. One such typical example is found in the preface of Sun Zi Suan Jing
(Master Sun’s Mathematical Manual) in the 4th century, “Master Sun says: Mathemat-
ics governs the length and breadth of the heavens and the earth; affects the lives of all
creatures; forms the alpha and omega of the five constant virtues; acts as the parents
for yin and yang; establishes the symbols for the stars and the constellations; manifests
the dimensions of the three luminous bodies; maintains the balance of the five phases;
regulates the beginning and the end of the four seasons; formulates the origin of myriad
things; and determines the principles of the six arts.”

The conviction in seeing beauty and order in Nature was long-standing. Plato’s
association of the five regular polyhedra to the theory of four elements in Timaeus (c.4th
century B.C.) is an illustrative example. Over a millennium later, Johannes Kepler tried
to fit in the motion of the six known planets (Saturn, Jupiter, Mars, Earth, Venus,
Mercury) in his days with the five regular polyhedra in Mysterium Cosmographicum
of 1596. By calculating the radii of inscribed and circumscribed spheres of the five
regular polyhedra nestled in the order of a cube, a tetrahedron, a dodecahedron, an
icosahedron and an octahedron, he obtained results that agreed with observed data to
within 5% accuracy! He also thought that he had explained why there were six planets
and not more! Now we realize the lack of physical ground in his theory, beautiful as it
may seem. Still, it is a remarkable attempt to associate mathematics with physics, and
indeed it led to something fruitful in the subsequent work of Kepler.

Well into the modern era the explanatory power of mathematics on Nature is still
seen by many to be mystical but fortunate. Eugene Paul Wigner, 1963 Nobel Laureate
in physics, refers to it as “the unreasonable effectiveness of mathematics in the natural
sciences”. Heinrich Rudolf Hertz even said (referring to the Maxwell’s equations which
predicted the presence of electromagnetic wave that he detected in the laboratory in
1888.), “One cannot escape the feeling that these mathematical formulas have an in-
dependent existence of their own, that they are wiser than we are, wiser even than
their discoverers, that we get more out of them than was originally put into them.”
Robert Mills, an eminent physicists of the Yang-Mills gauge theory fame, says, “You
can’t hope to understand the [physics / math] until you’ve understood the [math /
physics].” [Mills, 1994]. This dictum that emphasizes a two-way relationship between
mathematics and physics furnishes the guideline for our enrichment course.

2 How is such a course run?

The enrichment course, with its title same as that of this paper, ran for ten sessions
each taking up three hours on a weekend (outside of the normal school hours). It had
been run four times, in the spring of 2006 to 2009, in collaboration with a colleague
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at the Department of Physics in my university. Much as we wish to offer a truly
integrated course, other constraints and factors (individual expertise, affordable time
of preparation, inadequacy on our part, lack of experience in this new venture) force
some sort of division of labour so that each one of us took up about half of the course.
However, we still tried to maintain a spirit of integration in having a balanced emphasis
on the mathematics and the physics in a suitable manner. In this paper I will naturally
tell more about the part I took up, which involved the first two sessions, two intermittent
sessions and the final session.

The underlying theme of the course is the role and evolution of mathematics, mainly
geometry and calculus, with related topics in linear algebra, in an attempt to understand
the physical world, from the era of Isaac Newton to that of James Clerk Maxwell
and beyond it to that of Albert Einstein. In other words, it tries to tell the story of
triumph in mathematics and physics in the past four centuries. The physics provides
both the source of motivation and the applications of a number of important topics
in mathematics. Along the way both ideas and methods are stressed, to be learnt in
an interactive manner through discussion in tutorials and group work on homework
assignments. A rough sketch of the content of the course is summarized in Table 1.
Considering the level of the course, it is to be expected that topics near to the end are
treated only after a fashion, mainly for broadening the vista of the students rather than
for teaching them the technical details.

Table 1

3 A sketch of the content of the course

Each session of the enrichment course consists of a lecture in the first hour followed by
a tutorial. The lecture serves to highlight some keypoints and outline the development
of the topic. What is covered is selective in the sense that the material illustrates some
theme rather than provides a comprehensive account. Interested students are advised
to read up on their own relevant references suggested in each session. [A selected sample
of such books can be found in the list of references, some of which are more suitable
for the teacher than the student (Barnett, 1949; Boyer, 1968; Einstein & Infeld, 1938;
Feynman, 1995; Hewitt, 2006; Lines, 1994; Longair, 1984; Mills, 1994; Olenik, Apostol
& Goldstein, 1985/1986; Pólya, 1963; Siu, 1993).] The course is seen as a means to
arouse, to foster and to maintain the enthusiasm of students in mathematics and physics
more than as a means to equip them with a load of knowledge.

To keep within the prescribed length of the paper I would not give a full account of
the content but select certain parts, particularly the beginning part that sets the tone of
the course, with supplementary commentary, to illustrate the intent of the enrichment
course. The intent is to highlight the beautiful (some would say uncanny!) and intimate
relationship between mathematics and physics, in many cases even mathematical ideas
that have lain quietly in waiting for many years (sometimes more than a thousand
years!) that enhance theoretical understanding of physical phenomena. In fact the
relationship is two-way so that the two subjects benefit mutually from each other in
their development. In section 4 some sample problems in tutorials are appended in the
hope of better illustrating this intention.

The course begins with a discussion on the Aristotelian view of the physical world
that came to be known since the 4th century B.C.. All terrestrial matters, which are
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held to be different from heavenly matters, are believed to contain a mixture of the
four elements in various compositions. Each of the four elements is believed to occupy
a natural place in the terrestrial region, in the order of earth (lowest), water, air, fire
(uppermost). Left to itself, the natural motion of an object is to go towards its natural
position, depending on the composition and the initial position. Hence, a stone (earth)
falls to the ground but a flame (fire) goes up in the air. A natural motion has a cause. It
is believed that the weight of a stone is the cause for its free falling motion. According
to the Aristotelian view, a heavier stone will fall faster than a lighter one. Any motion
that is not a natural motion is called a violent motion, believed to be caused by a force.

We next bring in the physical world view that Galileo propounded in the first part
of the 17th century. In particular, he demolished the theory that a heavier object falls
faster by mathematical reasoning (thought-experiment) in Discorsi e dimonstrazioni
matematiche intorno a due nuove scienze (Discourses and Mathematical Demonstra-
tions Concerning Two New Sciences) of 1638. Suppose object A1 has a larger weight
W1 than the weight W2 of object A2. Tie the objects A1 and A2 together to form an
object of weight W1 +W2. The more rapid one will be partly retarded by the slower;
the slower one will be somewhat hastened by the swifter. Hence, the united object will
fall slower than A1 alone but faster than A2 alone. However, the united object, being
heavier than A1, should fall faster than A1 alone. This is a contradiction! [Hawking,
2002, p.446]. A commonly told story says that Galileo dropped two balls of different
weights from the top of the Tower of Pisa to arrive at his conclusion. There is no his-
torical evidence that he actually did that. The significant point does not lie so much in
whether Galileo actually carried out the experiment but in his arrival at the conclusion
by pure reasoning. Together with pure reasoning, Galileo was known for his emphasis on
observations and experiments as well, notably his experiments with an inclined plane.
By observing that a ball rolling down an inclined plane will travel up another inclined
plane joined to the first one at the bottom until it reaches the same height, he saw that
the ball will travel a greater distance if the second inclined plane is placed less steep
than the first one, the greater if the second inclined plane is less steep. From thence a
thought-experiment comes in again. If the second inclined plane is actually placed in a
horizontal position, the ball will travel forever without stopping. “Furthermore we may
remark that any velocity once imparted to a moving body will be rigidly maintained
as long as the external causes of acceleration or retardation are removed, a condition
which is found only on horizontal planes. ... it follows that motion along a horizontal
plane is perpetual ...” [Hawking, 2002, p.564]. This motivated him to announce his
famous law of inertia, which becomes the first law of motion in Newton’s Philosophiae
naturalis principia mathematicas (Mathematical Principles of Natural Philosophy) of
1687: “Every body persevers in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed thereon.” [Hawking,
2002, p.743]. This fundamental modification on the Aristotelian view (in a sense ac-
tually more natural according to daily experience!) that a force acting on an object is
exemplified not by the speed of its motion but by the change in speed (acceleration),
led to a quantitative description of this relationship in Newton’s second law of motion
(which yields the famous formula F = ma). It turned a new page in the development of
physics. We follow with a discussion on the work of Johannes Kepler in calculating the
orbit of Mars based on the meticulously kept observed data of Tycho Brahe [Koestler,
1959]. On the one hand the story displays a beautiful interplay between theory and

4



experiment. On the other hand Kepler’s laws on planetary motion provide a nice lead
to a discussion on Newton’s law of universal gravitation.

We next discuss the theory of wave motion along with the mathematics, culminat-
ing in the theory of electromagnetism and Maxwell’s equations. Mathematics owed to
physics a great debt in that a large part of mathematical analysis that was developed
in the 18th and 19th centuries have to do with the Vibrating String Problem. We
talk about the all-important notions of function and of equation. Together with the
discussion on vector calculus and the generalized Fundamental Theorem of Calculus,
there is much more material than enough to take up the second part of the course. The
unification of electricity, magnetism and light through the electromagnetic wave is a
natural lead into the final third of the course, which is spent on a sketch of the theory
of relativity and on quantum mechanics. Some probability theory is introduced to let
students appreciate the stochastic aspect that is not usually encountered in the usual
school curriculum. The close relationship between geometry and physics is stressed in
the final episode on the theory of general relativity. In a letter to Arnold Sommerfeld
dated October 29, 1912 (collected in A. Hermann, Einstein/Sommerfeld Briefwechsel,
Schwabe Verlag, Stuttgart, 1968, p.26) Albert Einstein wrote, “I am now exclusively
occupied with the problem of gravitation, and hope, with the help of a local mathemati-
cian friend, to overcome all the difficulties. One thing is certain, however, that never in
my life have I been quite so tormented. A great respect for mathematicians has been
instilled within me, the subtler aspects of which, in my stupidity, I regarded until now
as pure luxury. Against this problem, the original problem of the theory of relativity
is child’s play.” The ‘mathematician friend’ refers to Einstein’s school friend Marcel
Grossmann, and the mathematics refers to Riemannian geometry and tensor calculus.
The story on the work of Carl Friedrich Gauss and Georg Friedrich Bernhard Riemann
in revealing the essence of curvature which lies at the root of the controversy over the
Fifth Postulate in Euclid’s Elements (but which had been masked for more than two
thousand years when the attention of mathematicians was directed into a different di-
rection) and its relation to Einstein’s idea on gravitation theory is fascinating for both
mathematics and physics. No wonder Riemann concluded his famous 1854 lecture ti-
tled Über die Hypothesen welche der Geometrie zu Grunde liegen (On the hypotheses
which lie at the foundation of geometry (an English translation can be found in David
Eugene Smith (ed.), A Source Book in Mathematics, McGraw-Hill, New York, 1929,
pp.411-425) with: “This path leads out into the domain of another science, into the
realm of physics, into which the nature of this present occasion forbids us to penetrate.”

4 Some sample problems in tutorials

In this course more than half of the time in each session is spent as a tutorial, which is
regarded as an integral part of the learning experience. Students work in small groups
with guidance or hint provided on the side by the teacher and a team of (four) teaching
assistants. At the end of each session there is a guided discussion with presentations by
students. A more detailed record of the solution is put on the web afterward for those
who are interested to probe further. Some sample problems in the tutorials are given
below to convey a flavour of the workshop.

Question 1. A,B,C,D move on straight lines on a plane with constant speeds.
(The speed of each chap may be different from that of another.) It is known that each
of A and B meets the other three chaps at distinct points. Must C and D meet?
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Under what condition will the answer be ‘yes’ (or ‘no’)? [The question was once given
in an examination at Oxford University.]

Discussion: C and D will (respectively will not) meet if they do not move (respec-
tively move) in the same or opposite directions. The catch is a commonly mistaken
first reaction to draw a picture with two straight lines emanating from a common point
MAB (the point where A and B meet) and two more straight lines, one intersecting the
first line at MAC and the second line at MBC , the other one intersecting the first line at
MAD and the second line at MBD. It seems that the answer comes out obviously from
the picture until one realizes that a geometric intersecting point needs not be a physical
intersecting point! This problem is set as the first problem in the first tutorial to lead
the class onto the important notion of spacetime, which will feature prominently in the
theory of relativity. Viewed in this context, no calculation is needed at all!

Question 2. Suppose you only know how to calculate the area of a rectangle —
our ancestors started with that. Explain how you would calculate the area of a triangle
by approximating it with many many rectangles of very small width. This answer, by
itself, does not sound too exciting. You can obtain it by other means, for instance by
dissection — our ancestors did just that! However, what is exciting is the underlying
principle that can be adapted to calculate the area of regions of other shapes. Try to
carry out a similar procedure for a parabolic segment. (Find the area under the curve
given by y = kx2 from x = 0 to x = a. What happens if you are asked to find the area
under the curve y = kx3? y = kx4? · · · ? Later you will see how a result enables us to
solve this kind of problem in a uniform manner.)

Discussion: This problem is set at the beginning of the course to introduce some
ideas and methods devised by ancient Greeks and ancient Chinese on problems in
quadrature, to be contrasted with the power of calculus developed during the 17th
and 18th centuries, culminating in the Fundamental Theorem of Calculus with its gen-
eralized form (Stokes’ Theorem) established through the development of the theory of
electromagnetism in the 19th century. For this particular problem some clever formulae
on the sum of consecutive rth power of integers 1r+2r+3r+ · · ·+N r are needed. That
kind of calculation is not totally foreign to the experience of school pupils and yet offers
some challenge beyond what they are accustomed to, which is therefore of the level of
difficulty the workshop is gauged at. After struggling with specific but seemingly ad
hoc ‘tricks’ of this sort, students would appreciate better the power afforded by the
Fundamental Theorem of Calculus when they learn it later.

Question 3. (a) By computing the sum

1 + z + z2 + · · ·+ zn

where z = eiθ, and using Euler’s formula

eiθ = cos θ + i sin θ,

find a simple expression for
1 + cos θ + cos 2θ + · · ·+ cosnθ

and sin θ + sin 2θ + · · ·+ sinnθ.
(b) Apply the result in (a) to calculate the area under the curve y = sin x on

[0, π] from scratch in the way you did for y = x2 in the first tutorial. Do the same for
y = cosx on [0, π]. (How do you normally calculate this area in your class at school?)
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Discussion: Besides introducing a most beautiful formula in mathematics, this
problem further strengthens students’ appreciation of the Fundamental Theorem of
Calculus. In the course of explaining Euler’s formula students are led into the realm of
complex numbers, to the ‘twin’ functions of logarithm and exponentiation.

Question 4. (a) Pierre Simon Laplace (1749-1827) once said, “By shortening the
labors, the invention of logarithms doubled the life of the astronomer.” To appreciate
this quotation, let us work on an multiplication problem (81276 × 96343) like people
did before the invention of logarithm. The method, known as “prosthaphaeresis”, is
based on the addition formula of trigonometric functions.

(i) If 2 cosA = 0.81276 and cosB = 0.96343, find A and B.

(ii) Calculate A+B, A− B, and hence calculate cos(A+B), cos(A− B).

(iii) Calculate cos(A+B)+cos(A−B), which is equal to 2 cosA cosB, and hence find
out what 81276× 96343 is.

(b) Compare Napier’s logarithm with the natural logarithm you learn in school.
(c) Making use of the idea Leonhard Euler (1707-1783) explained in Chapter XXII

of his Vollständige Anleitung zur Algebra (1770), compute the common logarithm of 5,
log 5, in the following steps:

(i) As 5 lies between 1 and 10, so log 5 lies between 0 and 1. Take the average of 0
and 1, which is 1/2. Compute 101/2, which is the square root of 10, say a1.

(ii) Decide whether 5 falls into [1, a1] or [a1, 10]. Hence decide whether log 5 falls into
[0, 1/2] or [1/2, 1]. It turns out log 5 falls into [1/2, 1]. Take the average of 1/2
and 1, which is 3/4. Compute 103/4, which is the square root of 10 multiplied by
the square root of 101/2, say a2.

(iii) Decide whether 5 falls into [a1, a2] or [a2, 10]. Hence decide whether log 5 falls
into [1/2, 3/4] or [3/4, 1]. It turns out log 5 falls into [1/2, 3/4]. Take the average
of 1/2 and 3/4, which is 5/8. Compute 105/8, which is the square root of 101/2

multiplied by the square root of 103/4, say a3.

(iv) Continue with the algorithm until you reach a value of log 5 accurate to three
decimal places.

Discussion: Note the similar underlying idea of converting multiplication to ad-
dition in “prosthapharesis” and in logarithm. That allows the class to see how John
Napier and later Henry Briggs devised their logarithm in the early 17th century. The
bisection algorithm explained in (c), though seemingly cumbersome from a modern
viewpoint, is nonetheless very natural and simple, reducing the calculation to only
finding square root. It provides an opportunity to go into the computation of square
root by the ancients, first propounded in detail in the ancient Chinese classics Jiu Zhang
Suan Shu (Nine Chapters on the Mathematical Art) compiled between 100 B.C. and 100
A.D. For the generation of youngsters who grow up with calculators and computers, this
kind of ‘old’ techniques may add a bit of amazement as well as deeper comprehension.

Question 5. In an x − t spacetime diagram drawn by an observer S who regards
himself as stationary, draw the world-line for S and the world-line for an observer S ′
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moving with uniform velocity v (relative to S). At t = 0 both S and S ′ are at the
origin O. Both S and S ′ observe a light signal sent out from O at t = 0, reflected back
by a mirror at a point P , then received by S ′ at Q. Which point on the world-line
for S ′ will S ′ regard as an event simultaneous with the reflection of the light signal
at P? Call this point P ′. Show that the slope of the line P ′P is equal to v/c2, where
c is the speed of light (units omitted). [The physical interpretation is as follows. S
regards two events, perceived as simultaneous by S ′, as separated by a time Δt given
by Δt = (v/c2)Δx, where Δx is the distance between the events measured by S and v
is the velocity of S ′ relative to S.]

Discussion: We pay attention to the physical interpretation of a mathematical
calculation and vice versa. This problem focuses on the key notion of simultaneity
in the theory of special relativity. There is a note of caution for this problem. The
picture of the spacetime diagram (according to the observer S) is to be seen in two
ways: (i) the picture as it is, just like a picture one is accustomed to see in school
geometry, (ii) the coordinate system of S with coordinates assigned to each event. In
the lecture we take good care in denoting points in (i) by letters P,Q, P ′, O, etc., and
events in (ii) by (x(P ), t(P )), (x(Q), t(Q)), (x(P ′), t(P ′)), (x(O), t(O)), etc. One can
read the same in the shoes of the other observer S ′, in which case events in (ii) will
be denoted by (x′(P ), t′(P )), (x′(Q), t′(Q)), (x′(P ′), t′(P ′)), (x′(O), t′(O)), etc. In the
lecture we also explain how x(P ), t(P ) are related to x′(P ), t′(P ) and vice versa (by the
Lorentz transformation).

5 Conclusion

The triumph of Maxwell’s theory on electromagnetism resolved many problems and yet
introduced new difficulties that were resolved by Einstein’s theory of special relativity.
The triumph of Einstein’s theory of special relativity resolved many problems and yet
introduced new difficulties that were resolved by Einstein’s theory of general relativity.
But then the theory of general relativity introduces a more difficult problem on incom-
patibility with quantum mechanics, which is not revealed until one comes up with a
situation where both the mass involved is very large and the size involved is very small,
for instance, a black hole [Greene, 1999; Penrose, 2004]. Physics will march on to solve
further problems, and so will mathematics, hand-in-hand with physics, in a harmonious
way.
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Time period Physics Mathematics (mainly)

4th century B.C. Physical view of Aristotle Euclidean geometry
many centuries geometry (area / volume)
in between algebra (equations)
17th century physical view vectors in R

2 and R
3, calculus

of Copernicus, in one variable (functions,
Kepler, Galileo, including polynomial,
Newton, . . . rational, trigonometric,

logarithmic and exponential)
18th century wave and particle differential equations,

Fourier analysis, complex numbers
19th century theory of vector calculus, Stokes’ Theorem

electromagnetism (Fundamental Theorem
(Maxwell’s equations) of Calculus)

20th century theory of special probability theory,
and general relativity, non-Euclidean
quantum mechanics geometries of spacetime

Table 1
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I. Mechanics 

1. Kinematics & Dynamics 

(a)Work done by an applied force F  with displacement s   θcosFssFW =⋅=  

(b) Power by an applied force F  with velocity v    θcosFvvF
dt

dW
P =⋅==  

(c) Moment (or torque) by an applied force F  with distance r  from a fixed point 

ûsinθrFFr =×=Τ  

 

2. Projectile motion 

When an object is thrown on the ground with an angle θ  from the 

horizontal, the maximum range of an object is obtained when 

4

π
θ = , which is independent of the initial velocity 0v . 

 Horizontal Component Vertical Component (Taking upward as positive) 

Initial velocity θcos0vux =  θsin0vuy =  

Final velocity θcos0vvx =  θsin0vvy −=  
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x is max. when 12sin =θ , i.e. 
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θ = , i.e. 
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θ = . 

The use of double angle formula in trigonometry helps to determine the exact value of the angle 

for max. range. 

Extension: If the object is projected on an inclined plane with angle θ  and the angle between the 

initial velocity and the plane is α , then for max. range, 
24

θπ
α −= . 

 
Web link: http://ggbtu.be/m1082291 

 

3. Motion under gravity with air resistance 

Consider an object with mass m falling under gravity with air resistance and 

initial velocity 0v . 

Suppose air resistance ∝  velocity v. Let the air resistance kv= , where k is a 

positive constant. 

Net force acting on the object kvmgF −= . 
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If 
0v

mg
k = , net force is 0, so the object will fall under constant velocity 0v . 
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k ≠ , by Newton’s 2nd Law, kvmgma −=  

v
m

k
g

dt

dv
−=  

�� =

−

tv

v

dt
v

m

k
g

dv

00

 

t
m

k

v
m

k
g

v
m

k
gdv

v

−=

−

�
�
�

�
�
�

−

�
0

 

t
m

k
v

m

k
g

v

v

−=	



�
�


�
�
�
�

�
�
�

−

0

ln  

t
m

k
v

m

k
gv

m

k
g −=�

�
�

�
�
�

−−�
�
�

�
�
�

− 0lnln  

t
m

k

kvmg

kvmg
−=��

�

�
��
�

�
−

−

0

ln  

t
m

k

e
kvmg

kvmg −

=
−

−

0

 

)( 0kvmgekvmg
t

m

k

−=−
−

 

)( 0 mgkvemgkv
t

m

k

−+=
−

 

4 

�

�
�
�

�
�
�

−+=
−

k

mg
ve

k

mg
v

t
m

k

0  

In the long run, 
k

mg

k

mg
ve

k

mg
v

t
m

k

tt
=	




�
�


�
�
�
�

�
�
�

−+=
−

∞→∞→
0limlim  

The limit 
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 is called the terminal velocity. 

 

4. Circular Motion 

To obtain the expression of centripetal acceleration, we have to use vectors operation and limits. 

 

 

 

 

 

 

In the first figure, the velocity vectors iv  and fv  are tangential to the circular path. Thus they are 

perpendicular to the radius. 

Consider the direction of acceleration, i.e. the direction of vΔ . When 0→Δθ , vΔ  will tend to a 

direction perpendicular to iv  and fv , i.e. vΔ  is along radial direction towards the centre. Hence 

the acceleration is called centripetal acceleration. 

Consider the magnitude of vΔ , when 0→Δθ , θΔ=≈Δ |||| vv � . 
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5. Simple Harmonic Motion (S.H.M.) 

(a) Definition: Relation between acceleration and displacement is 

given by kxa −= , where k  is a positive constant.  

(i) k  is usually rewritten as 2ω , where 0>ω  is called the angular frequency. 

(ii) Consider 
2

2

dt

xd
a = . The relation is changed to a 2nd order ordinary differential 

equation 02
2

2

=+ x
dt

xd
ω . The general solution is given by tBtAx ωω sincos += , where 

A and B are constants. 

 

 

 

 

 

 

 (iii) Initial condition: 

6 

�

If the object starts from the equilibrium position, then tBx ωsin= , where 0≠B . 

 If the object starts from the extreme position, then tAx ωcos= , where 0≠A . 

(iv) Simple harmonic motion is isochronous, i.e. the period of S.H.M. is independent of 

its amplitude, as shown in the general solutions. 

 

(b) Example 1: Spring Mass System 

(i) Horizontal System 

Consider an object with mass m which is tied to a spring of force constant k along a horizontal 

ground. 

When the mass is displaced about its equilibrium position with displacement x, 

by Hooke’s Law, force F kx= −  

By Newton’s 2nd Law,  ma kx= −  

    
k

a x
m

= −  

2 k

m
ω∴ =  angular velocity 

k

m
ω =  

Period 
2

2
m

T
k

π
π

ω
= = , which is independent of the amplitude of oscillation. 

If we consider the system starting from extreme position A, 

tAx ωcos=  

sin
dx

v A t
dt

ω ω= = −  

Elastic Potential Energy 2 2 21 1
cos

2 2
U kx kA tω= =  
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Kinetic Energy 2 2 2 2 2 21 1 1
sin sin

2 2 2
K mv m A t kA tω ω ω= = =  

Total Energy 2 2 2 2 21 1 1
cos sin

2 2 2
U K kA t kA t kAω ω= + = + = , which is a constant. 

 

(ii) Vertical System 

Consider an object with mass m which is tied to a spring of force 

constant k vertically. 

At equilibrium position, there is an extension e of the spring. �  net 

force = 0, kemg =∴ . 

When the mass is displaced downwards about its equilibrium position 

with displacement x, 

Net force: ( )ma mg k e x= − +   (taking downwards as positive) 

  ma mg ke kx= − −  

  ma kx= −  

  
k

a x
m

= − , which is the same as the case of horizontal system. 

 

(iii) Inclined System 

Consider an object with mass m which is tied to a spring of force constant k along an inclined 

plane with angle θ . 

At equilibrium position, there is an extension e of the spring. � net force = 0, 

kemg =∴ θsin  

When the mass is displaced downwards about its equilibrium position with displacement x, 

8 

�

Net force: sin ( )ma mg k e xθ= − +   (taking downwards as positive) 

  sinma mg ke kxθ= − −  

ma kx= −  

  
k

a x
m

= − , which is still the same as the case of horizontal system. 

 

(c) Example 2: Simple Pendulum 

The 2 forces acting on an object in simple pendulum are the gravitational force mg and the 

tension T. Let θ  be the angle between the vertical and the string and l be the length of the string. 

Consider radial component, Tmg =θcos . 

Net force along tangential direction: θsinmgma −=  

θsinga −=  

Arc length θlx =  

If 0→θ , then θθ ≈sin , equivalently 1
sin

lim
0

=
→ θ

θ

θ
. 

x
l

g

l

x
gga �

�
�

�
�
�

−=�
�
�

�
�
�

−=−≈∴ θ  

 

6. Damped Harmonic Motion (D.H.M.) 

Consider a mass–spring system with mass m and force constant of the spring k. If there is a 

damping force vF ∝ , i.e. 
dt

dx
bF −= , where b is a constant, 

then net force 
dt

dx
bkx −−=  

T 
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By Newton’s 2nd Law, 
dt

dx
bkx

dt

xd
m −−=2

2

 

......(*)02

2

=++ x
m

k

dt

dx

m

b

dt

xd
 

Let 
m

k

m

b
a == 2,2 ω , so the characteristic equation of (*) is  

02 22 =++ ωαα a  

2−=++ ωαα 222 2 aaa  

2−=+ ωα 22)( aa  

2−±−= ωα 2aa  

We consider the case of light damping, i.e. b is a small number such that 2a>2ω . Then the roots 

of the characteristic equation are both complex. 

The general solution of (*) is )cos( 22 φω +−= − atAex at , where A and φ  are constants 

determined by initial conditions. 

For simplicity, consider the object at the extreme position initially, ∴ take 0=φ . 

)cos( 22 atAex at −=∴ − ω  

Period of the oscillation 
22

2

a
T

−
=

ω

π
, which is larger than S.H.M. without damping. 

The amplitude of oscillation is affected by the damping factor ate− . Indeed the 2 graphs 

atAex −±=  form the envelopes of the graph of the D.H.M. 
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7. Gravitational Field 

(a) Newton’s Law of Gravitation: gravitational force 2r

GMm
F =  

(b) Gravitational field strength g is the gravitational force per unit mass, i.e. 
2r

GM

m

F
g == . 

Equivalently, mgF = . 

(c) Gravitational potential energy U is the work done by the gravitational force in moving a mass 

m from infinity to r. 

Work done on a mass by an infinitesimal displacement FdrFdrdrF =°=⋅= 0cos  

r

GMm

r

GMm
dr

r

GMm
FdrU

rrr
−

=	

�

�
�−

===
∞∞∞

�� 2  

Equivalently, 
dr

dU
F = . 

(d) Gravitational potential is the gravitational potential energy per unit mass, i.e. 
r

GM

m

U
V −== , 

or equivalently mVU = . 

Moreover, 
dr

dU
F =� , 

dr

mVd
mg

)(
= , 

dr

dV
g = , or equivalently �

∞

=

r

gdrV . 

The following figure shows the relationship between F, g, U and V.  

 

 

 

 

2r

GMm
F =

2r

GM
g =

r

GMm
U

−
=

r

GM
V −=

mgF =
mVU =

dr

dU
F =

dr

dV
g =

M m
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(e) The approximation of gravitational potential energy near Earth surface can be obtained by the 

following: 

Let R be the radius of the Earth. Consider a mass m which is of height h above the Earth surface, 

and h R<< . 

1

1
1

GMm GMm GMm h
U

hR h R RR
R

−

� �
= − = − = − +� �

+ � � � �+� �
� �

 

By first order approximation of Binomial Expansion, 1
GMm h

U
R R

� �
≈ − −� �

� �
 

2

GMm GMm
U h

R R
≈ − + , where 

GMm

R
−  is the gravitational potential energy on the Earth surface, 

denoted it by 0U . 

0 2

GM
U U mh

R
≈ +  

Change in gravitational potential energy 0 2

GM
U U U mh mgh

R
Δ = − ≈ =  

 

8. Rotational Motion of a Rigid Body 

(a) Moment of Inertia  

Consider a rigid body rotating in a constant angular velocity ω . The body is divided into small 

mass im , each with a distance ir  from the axis of rotation. 

K.E. of a small mass )(
2
1

)(
2
1

2
1 2222

iiiiii rmrmvm ωω ===  

K.E. of the rigid body dmrdmr �� == 2222

2
1

2
1

ωω  

Define moment of inertia dmrI �= 2  

12 

�

∴K.E. of the rigid body 2

2
1

ωI= , compared with a rigid body in linear motion K.E. 2

2
1

mv=  

Hence moment of inertia takes the role of mass in rotational motion. 

 

(b) Example of moment of inertia 

Consider a uniform rod of mass m, length L and linear density 
L

m
=ρ  

infinitesimal mass with infinitesimal length:  drdm ρ=  

moment of inertia drr
L

m
dr

L

m
rdrrdmrI ���� =�

�
�

�
�
�

=== 2222 ρ  

(i) Rotating along an axis passing through its mid–point 

1283
2

3
22 232

0

32

0

2
2

2

2 mLL

L

mr

L

m
drr

L

m
drr

L

m
I

LLL

L

=��
�

�
��
�

�
=	




�
�


�
=== ��

−

 

(ii) Rotating along one end of the rod 

3
)(

33

2
3

0

3

0

2 mL
L

L

mr

L

m
drr

L

m
I

LL

==	



�
�


�
== �  
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Q q 

II. Electricity and Magnetism 

1. Electric Field 

(a) Electric force on a charge q by a fixed charge Q is given by 

2
04 r

Qq
F

πε
= . (Coulomb’s Law) 

 

(b) Electric field strength E by a fixed charge Q is 

electric force per unit charge i.e.  

2
04 r

Q

q

F
E

πε
== . Equivalently qEF = . 

 

(c) Electric potential energy U is the work done by the electric force F in moving a charge q 

from infinity to r. 

If charges Q and q are of the same sign, the external force required to put the charge q from 

infinity is opposite to the electric force. Mathematically, by scalar product 

work done on a charge q by an infinitesimal displacement FdrFdrdrF −=°=⋅= 180cos  

Work done to put the charge q from infinity to a distance r from charge Q is given by  

r

Qq
r

Qq
dr

r

Qq
FdrU r

rr

0

1

0
2

0 4
][

44 πεπεπε
=−��

�

�
��
�

� −
=−=−= ∞

−

∞∞

��  

Equivalently, 
dr

dU
F −= . 

(d) Electric potential is the electric potential energy per unit test charge, i.e. 
r

Q

q

U
V

04πε
== . 

Equivalently qVU = . 
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Moreover, 
dr

dU
F −=� , 

dr

qVd
qE

)(
−= , 

dr

dV
E −=∴ , or equivalently �

∞

−=

r

EdrV . 

The following figure shows the relationship between F, E, U and V.  

 

 

 

 

 

 

 

2. Circuit with internal resistance in battery 

Let the electromotive force (e.m.f.) of a battery be 0V , with internal 

resistance r and equivalent resistance in the circuit R.  

By Ohm’s Law, current 
Rr

V
I

+
= 0  

Power consumed by the internal resistance 
2

2
0

2

02

)( Rr

rV
r

Rr

V
rIP

+
=�

�
�

�
�
�

+
==  

Consider the extremum of this power, 

3

2
0

3

2
0

4

2
2

0 )(

)(
]2)[(

)()(

)1)()(2()1()(

Rr

rRV
rRr

Rr

V

Rr

RrrRr
V

dr

dP

+

−
=−+

+
=

+

+−+
×=  

When 0=
dr

dP
, Rr = . 

By first derivative test, P is max. when Rr = . 

2
04 r

Qq
F

πε
=

r

Qq
U

04πε
=

2
04 r

Q
E

πε
=

r

Q
V

04πε
=

dr

dU
F −=

dr

dV
E −=

qEF = qVU =
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Max. power consumed by the internal resistance 
R

V

R

RV

RR

RV
P

4)2()(

2
0

2

2
0

2

2
0 ==
+

=  

On the other hand, the total power consumed P
R

V
P 2

2

2
0

0 ==  

 

3. Capacitance 

Definition: Capacitance is the charge stored per unit voltage.  
V

Q
C =  

Charging a capacitor 

Consider a circuit with equivalent capacitance C and equivalent resistance R. The capacitor 

contains zero charge initially. 

Potential difference: 

dt

dQ
R

C

Q
IR

C

Q
VVV RC +=+=+=0  

RC

QCV

C

Q
V

Rdt

dQ −
=�

�
�

�
�
�

−= 0
0

1
 

�� =
−

tQ

RC

dt

QCV

dQ

00 0

 

tQ

RC

t

QQ

QQd

00 0

0 )(
	

�

�
�

=
−

−
− �  

RC

t
QQ Q −

=− 00 )][ln(  

RC

t
QQQ

−
=−− 00 ln)ln(  
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RC

t

Q

QQ −
=��

�

�
��
�

� −

0

0ln  

RC

t

e
Q

Q −

=−
0

1  

RC

t

e
Q

Q −

−=1
0

 

��
�

�
��
�

�
−=

−

RC

t

eQQ 10  

RC

t

RC

t

RC

t

RC

t

eIe
R

V
e

CR

CV

RC
eQ

dt

dQ
I

−−−−

===�
�
�

�
�
� −
��
�

�
��
�

�
−== 0

00
0

1
 

��
�

�
��
�

�
−=��

�

�
��
�

�
−==

−−

RC

t

RC

t

C eVe
C

Q

C

Q
V 11 0

0  

RC

t

RC

t

R eVeRIIRV
−−

=== 00 )(  

Define the time constant be  RC . 

When RCt 5= , 0
5

0 993.0)1( QeQQ ≈−= − , the capacitor is regarded as fully charged. 

 

4. Electromagnetism 

(a) Magnetic Flux φ  and Magnetic Field Strength B  

(i) θφ cosBAAB =⋅= , where A  is the area that the magnetic flux 

passing through, θ  is the angle between B  and A . 

 

RV
0V
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(ii) magnetic flux linkage φN=Φ , where N is the number of turns of a coil 

(iii) magnetic field strength B by Biot–Savart Law: �� == dl
r

I
dBB

2
0

4

sin

π

θμ
 

(I) by a current carrying wire with distance r:  
r

I
B

π

μ

2
0=  

(II) by N circular coils with radius R:  
R

NI
B

2
0μ

=  

(III) by a solenoid with n turns per unit length: nIB 0μ=  

  

 

 

 

 

(b) Magnetic Force 

(i) on current carrying wire 

The magnitude of magnetic force F  acting on a current carrying wire with current I  and 

length �  by a magnetic field B  is given by θsinBIlF = . The direction is given by 

Fleming’s Left Hand Rule. 

 

 

 

In vector notation, BIF ×= � . 

18 

�

(ii) on a point charge 

The magnitude of magnetic force F  acting on a charge q with 

velocity v  by a magnetic field B  is given by θsinqvBF = . 

The direction is also given by Fleming’s Left Hand Rule. 

In vector notation, BvqF ×= . 

 

(c) Faraday’s Law of Electromagnetic Induction 

When there is a change in magnetic field, an induced e.m.f. will be produced. 

Induced e.m.f.  
dt

d
N

φ
ε −= , where N is the number of turns in a coil and φ  is 

the magnetic flux. 

 

(d) Application of Faraday’s Law: 

(i) Induced e.m.f. of a moving conductor 

Suppose a conductor moves with a constant velocity v , perpendicular to a uniform 

magnetic field B . 

)()(1 BA
dt

d
AB

dt

d

dt

d
N −=⋅−=−=

φ
ε  

 Blv
dt

ds
Blls

dt

d
B −=−=−= )(  

 

(ii) Generator 
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Consider a coil with N turns and area A rotating with a constant angular velocity ω   in a 

uniform magnetic field B. 

 

 

 

tNBAt
dt

d
NBABA

dt

d
NAB

dt

d
N

dt

d
N ωωωθ

φ
ε sin)(cos)cos()( =−=−=⋅−=−=  

 

(iii) Search Coil 

Search coil is used to measure a changing magnetic field at a certain point. Suppose the 

changing magnetic field is produced by an a.c. signal, i.e. tBB ωsin0=  

By rotating the search coil to obtain the maximum signal so that B is perpendicular to the 

coil, we have  

tNABtB
dt

d
NABA

dt

d
NAB

dt

d
N

dt

d
N ωωω

φ
ε cos)sin()()( 00 −=−=−=⋅−=−=  

Max. induced e.m.f. ω0NAB= . 

By measuring the max. induced e.m.f., we get the magnetic field strength B. 

 

(e) Inductance 

Definition:  Inductance is the magnetic flux linkage per unit current.  
I

N
L

φ
=  

(compared with capacitance) 
20 
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By Faraday’s Law, 
dt

LId

dt

d
N

)(
−=−=

φ
ε  

When a current I passing through a solenoid is changed, there is an induced e.m.f. in the solenoid. 

� for solenoid, AnIBAAB )(0cos 0μφ =°=⋅= ,  

Inductance of a solenoid 
l

AN
nNA

I

nIAN

I

N
L

2
0

0
0 )( μ

μ
μφ

====  

In a LR circuit, when the switch is turned on, there is an increase in current across the solenoid, 

hence a change in magnetic flux linkage. Therefore there will be an induced e.m.f. to oppose the 

change, which is the voltage across the solenoid (the inductor). 

RL VVV +=0  

IR
dt

dI
LRI +=0  

dt

dI

L

RII
=

− )( 0  

�� =
−

tI

dt
L

R

II

dI

00 0

 

t
L

R

II

IIdI

−=
−

−
�
0 0

0 )(
 

t
L

R
II I −=− 00 )][ln(  

t
L

R
III −=−− 00 ln)ln(  

t
L

R

I

II
−=��

�

�
��
�

� −

0

0ln  

V 
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L

Rt

e
I

I −

=−
0

1  

L

Rt

e
I

I −

−= 1
0
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�
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−

R

L
t

eII 10  
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�
�

�

�

��
�
�

�

�

−=
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�

�

�

��
�
�

�

�

−==
�
�
�

�
�
�
−

�
�
�

�
�
�
−

R

L
t

R

L
t

R eVeRIIRV 11 00  

�
�
�

�
�
�
−

�
�
�

�
�
�
−

=

��
�
�

�

�

��
�
�

�

�

−−=−= R

L
t

R

L
t

RL eVeVVVVV 0000 1  

 

5. Alternating Current 

(a) Root–Mean–Square value of current 

Consider an a.c. tII ωsin0= , where angular frequency 
T

π
ω

2
=  & T is the period 

�� ==

TT

rms tdtI
T

dtI
T

I
0

22
0

0

22 sin
11

ω  

� −=

T

dtt
T

I

0

2
0 )2cos1(

2
ω  

0I
I

LV
0V

RV
0V

22 

�

T
t

t
T

I

0

2
0

2
2sin

2 	

�

�
�

−=
ω

ω
 

�
�
�

�
�
�

−=
ω

ω

2

2sin

2

2
0 T

T
T

I
 

�
�
�

�
�
�

−=
ω

π

2

4sin

2

2
0 T
T

I
 

2

2
0I

=  

2
0I

Irms =∴  

 

(b) Capacitive and Inductive Reactance 

Consider an a.c. circuit with a capacitor, 

tVV ωsin0=  

)1......(cos)sin(
)(

00 tCVtV
dt

d
C

dt

CVd

dt

dQ
I ωωω ====  

Let ω00 CVI = , �
�
�

�
�
�

=∴
C

IV
ω

1
00  

Define capacitive reactance 
C

X C
ω

1
=  

Moreover, )2......(
2

cossin 00 �
�
�

�
�
�

−==
π

ωω tVtVV  

Comparing (1) & (2), V lags I by 
2
π

. 
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Similarly, for an a.c. circuit with an inductor, 

)3......(sin0 tII ω=  

tLItI
dt

d
L

dt

dI
L ωωωε cos)sin( 00 −=−=−=  

Voltage across the inductor to oppose the induced (or back) e.m.f. tLIV ωωε cos0=−=  

Let )(00 LIV ω=  

Define inductive reactance LX L ω=  

Moreover. )4.....(
2

sincos 00 �
�
�

�
�
�

+==
π

ωω tVtVV  

Comparing (3) & (4), V leads I by 
2
π

. 

So we have the phasor model for LCR circuit as shown in the figure. 

(c) Parallel LC circuit 

Consider an inductor and a charged capacitor with charge 0Q . Assume that there is no external 

voltage and no resistance. 

Potential difference in the circuit: 

0=+ CL VV  

0=+
C

Q

dt

dI
L  

0
1

2

2

=+ Q
LCdt

Qd
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Define 
LC

12 =ω . The solution of the 2nd order differential equation Q
dt

Qd 2
2

2

ω−=  is 

tQQ ωcos0=  (initial condition 0QQ =  is applied). 

Moreover, compare Q
dt

Qd 2
2

2

ω−=  and x
dt

xd 2
2

2

ω−= , this is a simple harmonic motion. The 

“oscillating” component is the charge. The phenomenon is also called electrical oscillation. 

 

(d) LCR circuit 

Consider an a.c. circuit with an inductor, a resistor and a capacitor 

Potential difference in the circuit: 

VVVV CRL =++  

tV
C

Q
IR

dt

dI
L ωsin0=++  

t
L

V
Q

LCdt

dQ

L

R

dt

Qd
ωsin

1 0
2

2

=++  

This is a non–homogeneous 2nd order differential equation. The complementary solution 

cQ depends on the roots of the characteristic equation ......(**)0
12 =++

LCL

R
αα  and the 

particular solution pQ  takes the form )sincos( 21 kQckQcQ +  (for complex roots in (**)) or the 

form )sincos( 21 kQckQc + (for real roots in (**)). 

 

III. Waves 

1. Beats 

Consider 2 waves with same amplitude A but slightly different frequencies 21, ff  
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A 

B

'B

C 

i

θ

D 

r

tAs 11 sinω=  tAs 22 sinω=   where 11 2 fπω =  and 22 2 fπω =  

Superposition of the 2 waves: 

2
)(

cos
2

)(
sin2)sin(sin 2121

2121

tt
AttAsss

ωωωω
ωω

−+
=+=+=  

Where || 21 ωω −  has a smaller frequency, hence larger period. 

Define || 21 ff −  as the beat frequency. 

 

 

 

 

 

 

 

 

2. Law of Reflection 

When light rays travel from A to B through a reflective surface at point C, it follows from 

Fermat’s Principle of Least Time that total distance travelled should be minimum. First of all, 

reflect point B about the surface to 'B . The required distance is the same as 'CBAC + . By 

Triangular Inequality, the total length is shortest when A, C and 'B  are collinear. 

θ=∴i       (vert. opp. ∠ s) 

CDB
CD

DB

CD

BD
BCD 'tan

'
tan ∠===∠�  
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CDBBCD '∠=∠∴  

θ=∠−°=∠−°= CDBBCDr '9090  

ri =∴  

 

3. Law of Refraction (Snell’s Law) 

It follows again from Fermat’s Principle of Least Action. 

In the figure, a light ray passes through medium 1 with velocity 1v  m/s from a fixed point P, 

which is a m above the water surface. The light ray reaches a point O on the boundary. Then it 

passes through the medium 2 with velocity 2v  m/s to a fixed point Q, which is b m below the 

water surface. R and S are 2 points on the boundary which are closest to points P and Q 

respectively. Let the angle of incidence and angle of refraction be θ and α  respectively.  
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Let T seconds be the time to travel from P to Q via O. 
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where 
v

c
n =  is the refractive index of a medium. 

 

4. Convex Lens 

An object is placed at a distance of u cm in front of a 

convex lens with constant focal length f cm. A screen is 

placed v cm at another side of the lens so that a real 

image is formed. Find the minimum distance between the 

object and the screen in terms of f . 

 

Method 1 

In order to obtain real image with finite image distance, u f> . 
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By lens formula, 
1 1 1

u v f
+ = . 

1 1 1

v f u
= −  

1 u f

v uf

−
=  

uf
v

u f
=

−
 

Let y cm be the distance between the object and the screen. 
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When 0
dy

du
= , 2u f=  or 0 (rej.) 

By 1st derivative test, y is a minimum when 2u f= . 
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(2 )( )
2

2

f f
v f

f f
∴ = =

−
. 

Minimum distance 2 2 4f f f= + = . 

It is the situation when the object and the image are of the same size. 

 

Method 2 

Let u xf= , where x is a real number. 

As the image is real, 1x > . 

By lens formula, 
1 1 1

u v f
+ = . 

1 1 1

xf v f
+ =  

1 1 1

v f xf
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1 1x
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The distance between the object and the screen is u v+  
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−
, where 1x > . 
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2 ( 1) (1)

( 1)
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When 0
dy

dx
= , 2x =  or 0 (rej.) 

By 1st derivative test, y is a minimum when 2x = . 

∴ the distance is minimum when 2u f= , i.e. when 2v f= . 

min. distance 2 2 4f f f= + = . 

It is the situation when the object and the image are of the same size. 

 

IV. Matter 

1. Gas 

Ideal gas law: nRTPV =  

Work done by the gas in an isothermal process, i.e. constant temperature: 
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2. Radioactive Decay 

Let N be the number of nuclei. The rate of decay of nuclei N
dt

dN
∝ . 

Moreover, N should be decreasing. 

kN
dt

dN
−=∴ , where k is called the decay constant. 
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Discussion 

1. Mathematics Background in Secondary School Physics curriculum 

(a) Trigonometry 

Radian Measure, Arc Length & Area of Sectors, 

Compound Angle Formula, Double Angle Formula, Sum–and–Product Formula 

(b) Vectors 

Operations of Vectors, Scalar and Vector Products 

(c) Limits 

Intuitive concepts of Limits, basic calculations of limits (up to HKCEE A. Math or 

HKDSE Math Module) 

(d) Differentiation 

Concepts of Derivatives from Limits, calculations of derivatives (up to HKDSE Math 

Module 2 level) 

(e) Integration 

Indefinite and definite integration (concepts and calculations up to HKDSE Math Module 

2 level) 

(f) Complex Numbers 

 Standard Form & Polar Form, Operations of Complex Numbers 

(g) Power Series 

 Taylor’s Series of Elementary Functions 

(h) Ordinary Differential Equations 

 1st order: Separable Variables 
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2nd order: Homogeneous and Non–Homogeneous Equations, Concept of Complimentary 

and Particular Solutions, Linear with Constant Coefficients 

 

2. Advantages of Incorporating Mathematics in Physics Curriculum 

(a) Some quantitative results which can’t purely determined by Physical Laws (or by merely 

Physics Curriculum) can be explained with the help of Mathematics. 

e.g. half life of a radioactive nuclei, the time variations of voltage, current and charge in RC, LR 

and LRC circuit. 

(b) Physical Laws can be written in a more succinct way. 

e.g. In electromagnetic induction, the direction of magnetic force/induced current is determined 

by Fleming’s Left/Right Hand Rule, and magnitude by formula θsinBIlF = . However, the 

direction and magnitude in both phenomena can be determined by BIF ×= � . 

(c) Mathematical knowledge comes in a more natural way. 

e.g. The definitions of scalar and vector products, without the direct application in mechanics 

and electromagnetism in Physics, are rather strange. 

(d) Compare and contrast Mathematics and Physics 

Currently a lot of students regard Mathematics and Physics as nearly the same subject, mainly 

due to lots of computations in Physics problems. Indeed students should be able to realize that 2 

subjects, though inter–related in many aspects, still have their own characteristics. Mathematics 

starts from several definitions, axioms and then the whole structure with Theorems are 

constructed. Physics, however, starts from natural phenomenon and several simple laws are 

concluded to explain them. In some cases, quantitative laws are written, which is mathematical, 

yet they are for modeling the real world, themselves can’t be regarded as definitions nor axioms. 

 

3. Difficulties in “Mathematical Physics” 

34 

�

(a) Inevitably students are required to have a good grasp of the knowledge in Mathematics in 

order to appreciate the application in Physics. Yet under current situation, it is not compulsory 

for students taking Physics as an elective subject in HKDSE to also take either Module 1 or 2 in 

Mathematics. 

(b) The sequence in teaching content should be revised so as to make the curriculum flow more 

natural. For example, in past HKCEE, students taking A. Math learnt Calculus during F.4 second 

term. Relevant topics in Physics should be put after that. 

(c) The HKDSE syllabus has been under revised and some parts in the curriculum in Modules 

are removed starting from 2016 HKDSE. If further changes are made, the relevant part in 

Physics curriculum relying on the removed portion in Mathematics curriculum will encounter 

problems. 


