
Basic Unit 1: Basic control of electronic components 0

Junior Secondary

Robotics Learning and Teaching Resources
Basic Unit 1: Basic control of electronic components

Technology Education Section

Curriculum Development Institute

Education Bureau

The Government of the HKSAR

May 2019

Basic Unit 1: Basic control of electronic components 1

All comments and suggestions related to the resource materials may be sent to:

Chief Curriculum Development Officer (Technology Education)

Technology Education Section

Curriculum Development Institute

Education Bureau

Room W101, West Block, 19 Suffolk Road

Kowloon Tong

Hong Kong

The learning resources is developed by the Robot Institute of Hong Kong.

The copyright of the materials in this package, other than those listed in the

Acknowledgments section and the photographs mentioned there, belongs to the

Education Bureau of the Government of the Hong Kong Special Administrative Region.

Schools and educational organisations are welcome to use the content of this package for

non-profit making educational purposes. In all cases, proper acknowledgements should

be made.

Otherwise, all rights are reserved, and no part of these materials may be used for

publication or other purposes in any form without the prior permission of the Education

Bureau.

© Copyright 2019

Basic Unit 1: Basic control of electronic components 2

Content

Chapter 1: Basics of Robotics P.3

Chapter 2: What Is Arduino? P.7

Chapter 3: Arduino IDE (Software) P.11

Chapter 4: Control (I) – LED Control P.17

Chapter 5: Control (II) – Buzzer P.26

Chapter 6: Control (III) – Motor P.33

Chapter 7: Unit Project – Lie Detector P.39

Basic Unit 1: Basic control of electronic components 3

Basic Unit 1

 Basic control of electronic components

Chapter 1: Basics of Robotics

I. What is a robot?

When it comes to robots, many people will think

of humanoid machines with hands and feet.

However, this kind of machines tends to appear

only in science fiction movies, entertainment

venues, exhibitions and toy stores. They are very

different from industrial robots.

Industrial robots (IRs), sometimes called robotic

arms, can perform simple actions such as up-and-

down motions, and grab and pick out components

from machines. However, industrial robots can

also perform more complicated tasks such as

transportation, gripping, targeting, assembly and

inspection.

II. The definition of a robot

A robot is officially defined by the Robot Institute

of America in 1979 as 'a re-programmable, multi-

functional manipulator designed to move

materials, parts, tools, or special devices through

variable programmed motions for the

performance of a variety of tasks'. As long as a

machine satisfies the criteria, it can be called a

robot even if it does not have a

human form.

An industrial robot, which is usually referring to

a robotic arm, consists of several links connected

in series by linear, rotary or prismatic joints. At

one end, the robot is fixed to a supporting base,

and the other end is equipped with a tool and

manipulated into position to perform tasks.

Basic Unit 1: Basic control of electronic components 4

Nowadays, robots are becoming popular for

entertainment purposes and even for innovative

technologies, such as those related to human life,

animals and military purposes.

Therefore, a robot can also be defined as 'a human

made semi- or fully autonomous (self-controlled)

object or cooperating objects (with common

objectives) with intelligence that is

programmable'.

III. Design of industrial robots

Industrial robots are made up of six basic constituent elements, which are: the dynamic system, end-of-

arm tools, computerised digital controller, actuators, feedback devices and sensors.

The following diagram shows the inter-relationship between these six elements:

Dynamic
system

Mechanical engineering

Interaction with the environment

Computer science

Autonomous judgment

Electronic engineering

Sensing, driving and calculating

Basic Unit 1: Basic control of electronic components 5

Initially we upload the program to the

microcontroller, which will then react to give

corresponding outputs, for example to the robotic

arm and the end effector. The microcontroller

controls the various joints and the rotational base

flexibly to perform high-precision actions and

specific work goals. Then, the sensors of the robot

will return some readings to the microcontroller.

Finally, the microcontroller acts accordingly to

achieve the work goals.

Micro

Targets

Program

Sensor

Feedback

Robotic arm

Linkages

(Equivalent to the
human arm)

End-of-arm tool
(Equivalent to the
human hand)

Rotational base
(Equivalent to the
human body)

Joints
(Equivalent to the
human joint)

Microcontroller

Basic Unit 1: Basic control of electronic components 6

IV. Development of robots and advancement of robotics

Before 1950, robots were only characters in

science fictions. 1960 marks the beginning of

modern robots. Artificial intelligence

laboratories were set up by advanced international

universities such as the Massachusetts Institute of

Technology. The first computer-controlled

robotic arm was born during this period of time.

From 1970, the world officially entered the era of

mass production of robots. Different countries,

especially those in Europe, began to design robots

themselves. Microprocessors were also invented

during this period of time. In 1980, scientists

made a breakthrough to the bottleneck of robot

development, where robots were developed to

possess their own intelligence such that they can

play chess or interact with animals. In 1990,

robots were no longer limited to the industrial

area and penetrated into all aspects of society,

such as military use, entertainment, and imitation

of humans and animals. In 2000, robots have

become popular, and advanced technologies have

been developed, such as the da Vinci surgical

system, the robots sent to Mars by NASA for

exploration, and the birth of the open source

project Arduino.

V. Review questions

1. What is a robot?

2. What elements does robotics include?

3. What are the basic components of the design of a robot?

4. Can you describe the entire operation of a robot?

5. Can you give an overview of the development of robots?

The beginning of modern robots. Artificial intelligence laboratories were set up by advanced
international universities and the first computer-controlled robotic arm was born.

The era of mass production of robots. Different countries began to
design robots themselves and microprocessors were invented.

The intelligence of robot has been developed to a level where robots can perform
intelligent activities such as playing chess and interacting with animals.

Robots were no longer limited to the industrial area and have penetrated into all aspects
of society, such as military use, entertainment, and imitation of humans and animals.

Robots have become popular, and advanced technologies have been
developed, such as the da Vinci surgical system, the robots sent to Mars by
NASA for exploration, and the open source project Arduino.

Basic Unit 1: Basic control of electronic components 7

Chapter 2: What Is Arduino?

I. Understanding microcontrollers

Simply speaking, a microcontroller, MCU, is

indeed a tiny computer containing a processor,

memory, input/output units and other peripheral

devices that is installed in a single integrated

circuit. However, a microcontroller does not have

a built-in operating system and thus it cannot

operate like a computer. Programs need to be

developed on other computer systems before they

can be input to it.

II. Various microcontrollers

The core of most early microcontrollers adopts

Atmel AVR series developed by Atmel in 1996,

which is a family of 8-bit to 32-bit automatic

control reduced instruction set microcontrollers.

AVR uses flash memory as the data storage

medium for its single-chip microcontrollers, as

opposed to one-time programmable ROM,

EPROM, or EEPROM used by other

microcontrollers at the time. The following are a

few common microcontrollers.

Arduino UNO

The microcontroller that will be

used in this teaching resource.

The entry barrier for this

development board is low, and is

easy for non-professional people

to learn and use.

Intel Galileo

Famous computer processor

manufacturer Intel has also

developed microcontrollers.

The characteristic of this

development board is that it has

pin positions compatible with

Arduino UNO, and can be

programmed with Arduino IDE.

Basic Unit 1: Basic control of electronic components 8

Nucleo 64

The Nucleo development board

consists of a 32-bit

STMicroelectronics

microprocessor, which has a higher

processing power than Arduino,

but is harder to use in comparison

with Arduino.

Udoo Dual

This is a development board that

can load Windows 10 IoT. It is

more powerful than Arduino

UNO but more difficult to

program.

BeagleBone Black

This is a microcontroller

development board produced by

Texas Instruments in association

with Digi-Key and Newark

element14, which was released

in 2011.

Basic Unit 1: Basic control of electronic components 9

VI. What is Arduino?

Arduino was an assignment given to students of

the Ivrea Interaction Design Institute in Italy in

2005, aiming to provide a low-cost, easy-to-use

interface for students, amateurs or professionals

to design interactive devices that consist of

sensors and drivers.

Arduino is a computer control board that uses an

Atmel AVR single-chip microcontroller. It can be

connected to various input and output devices,

and can be connected to a variety of

communication modules. With suitable control

programs, a wide range of automatic control

applications can be made, for example,

controlling the rotation speed of a fan according

to the temperature, controlling the brightness of a

light or the speed of a motor with a variable

resistor, remote controlling home appliances with

infrared or Bluetooth, controlling a robotic arm or

robot with servo motors, and producing automatic

vehicles and aircraft.

The most prominent feature of Arduino is that

both its software and hardware are open-source.

Traditionally, it is a prerequisite for the developer

to possess a background in disciplines such as

electronic or electrical engineering in order to

develop a microcontroller program, which is not

at all easy for ordinary people to take part in.

Arduino has a low entry barrier, and is easy for

ordinary people to learn and use. Furthermore,

there are a lot of Arduino resources on the Internet

to which people can refer, and as a result, they can

complete their own works in a short time by

adjusting the design according to their needs.

Circuit design diagrams of Arduino can be

downloaded from the Internet, and there are

reasonably priced Arduino control boards

available for sale on the Internet.

Basic Unit 1: Basic control of electronic components 10

IV. Arduino control boards (hardware)

Programming by connecting to a computer via USB

Arduino can be connected to a computer with the universal USB connection to facilitate users to write

programs.

Online programming

Arduino uses an online programmer to load the boot loader to the control panel. It guides the operating

system to initiate the program, which has the following advantages:

1. Simplify the programming process

2. Initiate when running the user's program

3. Inspect the solution on the development platform

The following diagram shows the various components on an Arduino control board, and the various

input and output pins available.

V. Review question

1. What is Arduino UNO?

Reset button
ICSP pin

SCL SDA

Digital output and input pins

ICSP pin

ATmega328

16 MHz quartz
crystal

Analogue input pins (can
also be used as digital
output and input pins)

7 ~ 12 V power input
socket

DC voltage
regulation
module

ATmega16U2

USB connector

Basic Unit 1: Basic control of electronic components 11

Chapter 3: Arduino IDE (Software)

I. Program installation and connection between the hardware and the software

Arduino IDE is the programming platform and environment for Arduino. A lot of different programming

software can be used for Arduino but Arduino IDE that can be downloaded from arduino.cc will be

focused in this teaching resource.

Arduino IDE can be downloaded from www.arduino.cc

Arduino installation file

file:///C:/DAT%20typeset%202018/source/english/www.arduino.cc

Basic Unit 1: Basic control of electronic components 12

II. Arduino IDE layout

1. Layout introduction

2. Descriptions of the toolbar buttons:

Message

area

Toolbar

Code writing

area

Verify: Checks your code for errors before compiling it.

Upload: Compiles your code and uploads it.

New: Creates a new sketch (a program written using Arduino IDE).

Open: Presents a menu of all the sketches in your sketchbook.

Save: Saves your sketch.

Serial Monitor: Opens the serial monitor for communicating with

the Arduino via the serial port.

Basic Unit 1: Basic control of electronic components 13

III. Do it yourself – Understanding Arduino & Arduino IDE

This section is for students to familiarise

themselves with the operation of the Arduino

control board and Arduino IDE. For the computer

to communicate with the Arduino control board,

we must use the serial port. However, modern

computers generally use USB ports and thus

cannot communicate with the Arduino control

board directly. To handle this, we need to use a

USB-to-serial chip, commonly used types

including ATmega8U2, CH340, CP2102,

FTDI232R and PL2303. The official version of

the Arduino control board contains an

ATmega16U2 USB-to-serial chip, which can

facilitate us to use the computer to communicate

with the Arduino control board and burn

programs.

This exercise uses the on-board LED of the Arduino, and does not need to connect to external units.

1. Open Arduino examples - LED Blink: Click File  Examples  01.Basics  Blink.

ATmega16U2

Basic Unit 1: Basic control of electronic components 14

1. The following program will appear after clicking Blink.

This program consists of two main parts. In the first part, the code inside the setup() function

configures the Arduino's on-board LED as an output (OUTPUT). In the second part, the code

inside the loop() function turns the on-board LED on and off continuously.

3. Then plug in the USB cable to connect the Arduino control board with the computer.

Basic Unit 1: Basic control of electronic components 15

4. After connecting to the computer, we must first open the Control Panel of the computer > Device

Manager to find the Communications Port (also known as Serial Port) of the Arduino board. The

figure below shows the Communications Port (COM9) of the Arduino UNO found in the Device

Manager.

5. In Arduino IDE  Tools Board:  select Arduino UNO development board.

6. In Arduino IDE, select the Communications Port of the Arduino UNO found in the Device Manager

above.

Basic Unit 1: Basic control of electronic components 16

7. Press the Upload button. The program will be compiled and uploaded to the Arduino UNO

development board.

8. When the upload is done, you should see the Arduino's on-board LED begins to blink.

IV. Review questions

1. What is Arduino IDE?

2. How to connect the Arduino control board to the computer, and make them communicate?

Basic Unit 1: Basic control of electronic components 17

Chapter 4: Control (I) – LED Control

I. Light-emitting diode, LED

A light-emitting diode is the most basic and

commonly used output device. Its illuminating

property can be used to indicate the status, for

instance, the lighting up of a green LED and a red

LED can be used to indicate a qualified condition

and an unqualified condition respectively. In

addition, it can be used for program testing. As

a program is executed from top to bottom, if we

would like to test whether a part of commands has

been executed, we can add some codes under that

part of commands for flashing an LED. If the LED

flashes, it means that part of commands has been

executed. Furthermore, we can test the strength of

a signal. For example, we can use the received

signal as the brightness of the LED. Then we can

judge the signal strength with the naked eye. We

can use LEDs and programming to carry out all of

the above functions

An LED is a kind of unidirectional hardware, i.e.

we need to connect it according to the current of

a circuit; otherwise, it will not light up. An LED

usually has two leads, one long and one short. The

long one is called the anode and the short one is

called the cathode. The direction of the current

should flow from the anode to the cathode.

Since LEDs have a small size, do not heat up and

are more robust, in contrast to traditional light

bulbs that are solely used for lighting, LEDs are

widely used as the signal indicators of electronic

products. In this section, the LEDs we are going

to use are commonly seen small LEDs with a

range of colour choices such as red, orange,

yellow, green and blue.

Anode

(+)

Cathode

 (-)

Basic Unit 1: Basic control of electronic components 18

II. Different parts of an Arduino program

III. Different parts of a function

Different parts of a function written in C/C++ programming language.

Content between /* and */ is the remark

written by the programmer which will not

be executed.

Setup(): a function that will be executed

once. Pin 13 is configured as the output pin

here.

Content after // will not be executed also.

Loop(): a function that will be executed

over and over again until the power is cut

off.

Output of the function: 'void' means no output

Name of the function

Input of the function: () means no input

All commands of a

function need to be

placed between { and }

The command that a function

needs to complete should end

with a ';', e.g. a = a + b;

Basic Unit 1: Basic control of electronic components 19

pinMode(13, OUTPUT);
pinMode – calls the function to define the mode of the pin. The function first specifies the pin number

(1 ~ 13 or A0 ~ A5), followed by the action (INPUT, OUTPUT or INPUT_PULLUP). INPUT: input;

OUTPUT: output; INPUT_PULLUP: enables the pull-up resistor of this pin and provides a stable 5V

voltage.

digitalWrite(13, HIGH);

digitalWrite – Calls the function to define the pin as a digital output to be written with a 5V or 0V

value. The function first specifies the pin number (1 ~ 13 or A0 ~ A5), followed by the write action

(LOW or HIGH). HIGH: high electric potential (5V); LOW: low electric potential (0V).

delay(1000);

Delay – Calls the function to define a delay time of 1000 ms (must use milliseconds (ms) as the unit).

Throughout the programming process, we will need to record some data, which may be text or numbers.

We record these data at an address in the memory and give them names. These are variables. The

following are some variables commonly used in Arduino programs.

Type Memory size Value

boolean 8 bit (1 byte) 1 𝑜𝑟 0

byte 8 bit (1 byte) 0 ~ 255

char 8 bit (1 byte) −128 ~ 127

int 16 bit (2 bytes) −32768 ~ 32767

long 32 bit (4 bytes) −2147483648 ~ 2147483647

float 32 bit (4 bytes) ±3.4 𝑒 ± 38

Basic Unit 1: Basic control of electronic components 20

IV. Do it yourself – LED blink

The first task of this chapter is to try to control the blinking of an LED with the Arduino. There are two

parts in this task, which are to connect the Arduino with the LED and to program the Arduino to control

the LED.

1 Connecting the Arduino and the LED

We connect the LED, resistor and the Arduino as follows.

Not many electronic parts are required for this

task and the connection method is very simple.

First, we attach a red LED to a breadboard. Note

that the leads of an LED are different in lengths.

The longer one is the anode and the shorter one is

the cathode. To light up an LED, the current must

flow from the anode to the cathode. Therefore,

when the LED is on, the anode must be at a high

potential and the cathode must be at a low

potential. In this task, the anode and cathode of

the LED are connected to pin 13 and GND

(ground) of the Arduino board respectively. A

resistor is connected between the LED and the

Arduino board for limiting the current flowing

through the LED, so that there will not be

overcurrent affecting the operation of the LED.

5 connected nodes in a

vertical column

25 connected nodes in a

horizontal row

220 ohm resistor

Basic Unit 1: Basic control of electronic components 21

Understanding a breadboard:

A breadboard allows connection of electronic components used in a circuit with no soldering required.

1. Power rails: The breadboard shown in the

above figure has two rows of holes at the top

and bottom respectively. They are generally

used for providing power supply. The row

marked with '+' at the top has 25 interconnected

holes and all of them are positive pole. The

second row at the top marked with '–' is for

connecting to the ground. The first and second

rows at the bottom have the same configuration

as those at the top of the breadboard.

2. Terminal strips: The connection holes on the

breadboard shown in the above figure are

divided into upper and lower parts, which are

the main working area for connecting the

electronic components and jumper wires. The

five holes in the same vertical column (i.e. a-b-

c-d-e or f-g-h-i-j) are interconnected. However,

there is no connection between the vertical

columns (i.e. 1-30), and between the upper and

lower parts of the ravine (i.e. e-f).

2 Programming the Arduino to control the LED

Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development

board in the Tools menu and check whether the Communications Port is connected to the Arduino

already.

After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete program codes. Refer to file 1_4_1_led_flash.

Define the variable

Define the pin for

the LED

Set the blinking

frequency of the LED

Basic Unit 1: Basic control of electronic components 22

3 Program content explanation

1. Define the variable

The program is divided into three parts. In the first part, we define variable 'ledPin' to be an integer 13.

An integer is one of the data types in a program. To define an integer variable, we need to add 'int'

before the variable.

2. Define the pin for the LED

In the second part, we define the pin of the Arduino that is connected to the LED. In the previous part,

variable 'ledPin' is defined as integer 13. In this part, we use 'pinMode ()' to define pin 13 as an output

pin.

3. Set the blinking frequency of the LED

Assuming that the LED blinks once every two seconds, that means the time the LED is set to turn on

and off is one second each. We use 'digitalWrite()' in the program to control the LED: when 'digitalWrite'

is set as HIGH, the LED turns on; when 'digitalWrite' is set as LOW, the LED turns off. 'delay()' is

used to pause the program for a specific amount of time (in milliseconds). There are 1000 milliseconds

in a second.

4. When the program is uploaded to the Arduino UNO, the red LED on the breadboard will turn on

for one second and off for the next, and repeat over and over.

Basic Unit 1: Basic control of electronic components 23

V. Do it yourself – Traffic light

The second task of this chapter is very similar to the first one. In this task, we will try to control three

LEDs of different colours to light up one after another, imitating the traffic lights we often see in our

daily life.

1 Connecting the Arduino and the LEDs

We connect the LED, resistor and the Arduino as follows.

The way to connect the LEDs in this task is the same as that in the first task. The anodes of the LEDs

are connected to the Arduino and the cathodes are connected to GND. Since there are three LEDs to be

controlled in this task, we need to use three pins on the Arduino to connect the LEDs, which are pins 11,

12 and 13.

Basic Unit 1: Basic control of electronic components 24

2 Programming the Arduino to control the traffic light

Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development

board in the Tools menu and check whether the Communications Port is connected to the Arduino

already. After connecting the Arduino, we need to input the following program and upload it to the

Arduino.

The complete codes of the traffic light program. Refer to file 1_4_2_traffic_light.

3 Program content explanation

1. Define the variables

We define three variables in this part, namely, 'ledPin_R', 'ledPin_Y' and 'ledPin_G. The three variables

store the integers 13, 12 and 11 respectively.

2. Define the pins for the LEDs

In the second part, we define the pins of the Arduino to which the LEDs will connect. We use 'pinMode()'

to define pins 11, 12 and 13 as the output pins.

Define the variables

Define the pins

for the LEDs

Set the blinking

sequence and

frequencies of

the LEDs

Basic Unit 1: Basic control of electronic components 25

3. Set the blinking sequence and frequencies of the LEDs

The sequence for the LEDs to blink depends on the colours of the LEDs and is set to be in the order of

red, yellow and green. The duration for each LED to light up is one second. When an LED is turned on,

the LED that turns on previously will turn off. We use 'delay(1000)' to control the on and off duration

of the LEDs, and 'digitalWrite()' to control the order in which the LEDs are turned on and off.

VII. Review questions

1. What is an LED?

2. What are pinMode, int x = 3;?

Basic Unit 1: Basic control of electronic components 26

Chapter 5: Control (II) – Buzzer

I. Sound-producing objects and sound

In addition to emitting light, it is also common for

electronic software to generate sounds. Sound-

producing objects can generally be categorised

into two types: speaker and buzzer. A buzzer is

small and flexible. However, since its sound

quality is poorer, it is more suitable to be used in

alarm devices or devices that produce sounds for

drawing attention. A small speaker is larger than

a buzzer. Making use of the vibration of a paper

film, the sound quality of speakers is higher than

that of buzzers. Therefore, speakers are more

suitable for electronic products that need to

produce precise pitches such as robots, electronic

keyboards and mechanical assistants. The

following diagram shows a buzzer.

The main component of a buzzer is the diaphragm.

The diaphragm consists of a thin copper plate.

When a current is applied, electromagnetic force

will be produced to make the copper plate vibrate.

Sound is caused by vibration, and the frequency

of the vibration is called audio frequency. With a

formula, we can find out the notes on

conventional music scale that various audio

frequencies refer to. Before writing a music

program, let's review some fundamental music

knowledge.

II. Pitch and beat

The level of audio frequency is called pitch. In

music, we use Do, Re, Mi and other phonetic

names to represent pitches of various frequencies.

The keyboard on a piano is arranged according to

the audio frequency, in the order of musical scales

such as C, D and E. The frequency of a specific

pitch is exactly twice of that in the previous

octave (note: the 8th white key to the right of the

middle C 'Do' is the 'Do' an octave above middle

C 'Do').

Frequency is a standard of vibration measurement. Sound is a
waveform and each sound has its specific frequency. The
sharper the sound, the higher the frequency; the deeper the
sound, the lower the frequency.

Time

Low frequency

High frequency

Deeper sound

Sharper sound

Basic Unit 1: Basic control of electronic components 27

The task in this chapter is to use new syntax to control a buzzer, including 'for' loop and array.

III. 'for' loop

To get started, let's understand the syntax of a 'for' loop:

for（initial variable; conditional statement; count statement）{

statement 1;

statement 2;

}

When setting the loop, the first thing we should

decide is exactly how many times we want the

loop to repeat. Suppose we want to repeat three

times, example: for（byte i = 0 ; i < 3 ;

i++）{ }. In the first loop, the variable i has a

value of zero. When the first loop is executed

completely, the variable i will increase by one

and the second loop will be executed. Finally, the

variable i will increase by one again and the third

loop will be executed. As i needs to be smaller

than 3, the loop stops after the third loop is

completed.

From the loop syntax, we know that there are four

parts we need to set in a 'for' loop. The first thing

is to write 'for'. Then we need to set the initial

value of the variable, which is usually set as 0.

After representing the variable, we need to set the

execution condition. In the example, we set the

condition that the variable is smaller than 3, so

that the loop can repeat three times. Finally, we

need to set the method for determining the

number of repetition. We know that if the variable

is equal to 3, the loop will stop. If the variable is

incremented by one each time, a total of 3 times

will be run from 0 to 3. So we set the variable to

be incremented by one each time. Eventually,

write the program we need to execute repeatedly

to finish the loop.

In the previous paragraph, we mention that the

initial value is usually set as 0, but there are

exceptions, for example, when we want to define

the LEDs connected to pin 8 to pin 10 in turn. We

can define the pins as output in the program, then

we can use variable i to handle the logic. During

the process, the pin number to be defined is

incremented each time starting from 8 and ending

at 10. In the first run, the variable is 8; in the

second run, the variable becomes 9; in the third

run, the variable becomes 10. In this way, we can

reduce the size of the program and avoid repeating

the same program codes.

Basic Unit 1: Basic control of electronic components 28

 void setup() {

 for (byte i = 8 ; i <= 10 ; i++) {

 pinMode (i, OUTPUT);

 }

 }

IV. Array

Before discussing array, let's first find out how a

variable stores a value. In this part, we can think

of variable as a box. To define a variable, we are

giving a name to the box. Suppose an undefined

variable is an empty box. After we define it, the

box will store a value. In normal circumstances,

one of these boxes can store only one value. If we

need to store 10 values in a program, we need to

write 10 statements; if we need to store 100

variables, we need to declare 100 times. Such a

program is very inefficient. To handle such

situations, we can use an array, i.e. to define a

certain amount of similar boxes in one time. For

instance, the following syntax means that the box

can store 4 integers.

int Nums[4];（data type array name[array size] ;）

Nums [0] [1] [2] [3]

Basic Unit 1: Basic control of electronic components 29

V. Do it yourself – Buzzer

In this chapter, we will try to use Arduino to control a buzzer to play music. The task consists of two

parts: connecting the Arduino and the buzzer, and programming the Arduino to play music with the

buzzer.

1 Connecting the Arduino and the buzzer

We connect the buzzer and the Arduino as follows.

The way to connect the buzzer to the Arduino is

very simple and straightforward. As the buzzer

has high resistance itself, no extra electronic

component is required when using the buzzer.

The buzzer also has an anode and a cathode. The

anode and cathode are usually marked with a red

wire and a black wire respectively. We need to

connect the anode and cathode of the buzzer to pin

11 and GND of the Arduino respectively.

Basic Unit 1: Basic control of electronic components 30

2 Programming the Arduino to play music with the buzzer

Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development

board in the Tools menu and check whether the Communications Port is connected to the Arduino

already. After connecting the Arduino, we need to input the following program and upload it to the

Arduino.

The complete music playing program codes. Refer to file 1_5_play_music.

Use a loop to play

the song

Define the variables and

arrays

Define the functions

Define the pin for the buzzer

Basic Unit 1: Basic control of electronic components 31

3 Program content explanation

1. Define the variables and arrays

We define three variables and two arrays in this

part. The three variables are 'buzzerPin',

'notes_length' and 'tempo'. 'buzzerPin' stores an

integer of 11, representing the pin number of the

Arduino to which the buzzer is connected.

'notes_length' stores an integer of 25, representing

the total number of notes in the song. 'tempo'

stores an integer of 300, representing the length of

a beat. The two arrays are 'notes[]' and 'beats[]'.

'notes[]' stores different English letters, which

represent the notes in the song. 'beats[]' stores

the lengths of the notes. When the value of the

tempo is multiplied by each item in the array

beats[], the result obtained is the time each note is

played.

2. Define the functions

We define two functions, namely 'playTone()' and

'playNote()', in this part. Function 'playNote()' is

responsible for setting the frequency of each note

according to the English letters in array 'notes[]'.

Function 'playTone()' is responsible for playing

the song. Using 'tone()', we can play the song with

the buzzer connected to the pin defined in

'buzzerPin' according to the frequencies

calculated in function 'playNote()'; using

'noTone()', we can stop the buzzer from playing

the song. In the 'for' loop, the number of loops is

set according to the length of the song, and the

song is played according to the length of the

music scales.

3. Define the pin for the buzzer

In this part, we use 'pinMode()' to define pin 11 set in 'buzzerPin' as the output pin.

Basic Unit 1: Basic control of electronic components 32

4. Use a loop to play the song

In the fourth part, we use a 'for' loop from 0 to 25

to play all the notes defined in 'notes[]' once in the

program. There is an if-else condition set in this

loop. The if condition is to check whether there

are blank spaces in array 'notes[]'. If a blank space

occurs, the program will treat it as a rest; if it is

not a blank space, the program will treat it as a

normal note. At the end of the program, there is a

waiting of 'delay(1000)', which functions as a

pause between songs, making it easier for us to

listen to the song.

VI. Review questions

1. What is a 'for' loop?

2. What is an array?

3. What is a buzzer?

4. What are tone(), noTone()?

Basic Unit 1: Basic control of electronic components 33

Chapter 6: Control (III) – Motor

I. Understanding direct current (DC) motors

There are many types of motors. The one used in

this chapter is the DC motor, also known as the

yellow motor. The indispensable parts of a

motor include a permanent magnet and a coil. A

magnetic field will be generated when power is

supplied to the coil, and the permanent magnet in

the middle will rotate according to the magnetic

field. The same current will cause the motor to

turn in the same direction, allowing the motor to

rotate. Following this logic, if the power supply

is connected in reverse, the motor will rotate in

the reverse direction.

There are only two connections on a yellow motor

or a DC motor, one for power supply and the other

for connecting to the ground. However, the servo

motor we will user later, which provides high

stability, may have four to six connection wires

for setting the number of turns or angle of rotation

of the motor. Such highly precise operations are

typically used for industrial control, such as

robotic arms and photocopiers.

Except electrical appliances such as electric fans,

hair dryers and power drills that connect the

motor to the load (example: fan blades) directly,

most power devices use mechanical systems such

as gearboxes and pulleys to reduce the motor

speed or convert the direction of the power output

to increase the torque.

Coil

Rotational shaft

Permanent

magnet

Basic Unit 1: Basic control of electronic components 34

II. The H-bridge motor control circuit for controlling the forward and backward rotation of

a motor

From the introduction of motors above, we

understand that if we want to reverse the rotation

direction of a motor, we need to reverse the flow

of the current. However, in real situations, we

cannot control a robot in this way. Therefore, we

need to have an additional motor driver attached

to the motor for changing the rotation direction of

the motor. This motor driver is known as an H-

bridge motor controller. With this control method,

we can see from the above figure that the motor is

surrounded by four switches. The operation

method is as follows: in the first condition, when

switches 2 and 3 are closed, the motor will have a

leftward rotation; in the second condition, when

switches 1 and 4 are closed, the motor will have a

rightward rotation.

III. Do it yourself – Motor control

This chapter expects students to complete a task

for controlling a motor. Generally speaking, to

control a motor, a motor driver is required. A

motor has two rotation directions: clockwise and

anticlockwise, which correspond to different

directions of current flow respectively. Therefore,

if we want to program the motor to rotate in a

clockwise or anticlockwise direction to achieve

the task, we must use a motor driver.

Basic Unit 1: Basic control of electronic components 35

1 Connecting the Arduino, the DC motor and the motor driver

We connect the Arduino, the DC motor and the motor driver as follows.

Enlarged view of the motor driver

2 Programming the Arduino to operate the motor with the motor driver

Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development

board in the Tools menu and check whether the Communications Port is connected to the Arduino

already. After connecting the Arduino, we need to input the following program and upload it to the

Arduino.

Motor 1 Motor 2

Basic Unit 1: Basic control of electronic components 36

The complete dual DC motor program codes. Refer to file 1_6_two_dc_motor.

Define the

pins

Define the pins

as output

The control

logic on the

motor driver

Main program

Basic Unit 1: Basic control of electronic components 37

3 Program content explanation

1. The first part defines the pins, allowing us to write the program promptly.

2. The second part sets the working mode of the pins, which in this case is for communicating with

the motor driver. The Arduino UNO sends data to the motor driver, so the pin modes are set as

output.

3. The repeating part instructs the motor to move forwards for two seconds, move backwards for two

seconds and then stop for one second. Then the whole action is repeated.

Basic Unit 1: Basic control of electronic components 38

These codes define the actions according to the signals received by the motor driver. For example, when

all IN1, IN2, IN3 and IN4 are at low voltage, the motor will be stopped.

IV. Review questions

1. What is a DC motor?

2. What is an H-bridge motor control?

Basic Unit 1: Basic control of electronic components 39

Chapter 7: Unit Project – Lie Detector
Robotics covers a range of elements, including

science, technology and engineering. When

conducting the unit project, students need to apply

knowledge of various disciplines. For example,

firstly, you should start with scientific research,

studying the principle of electric current and the

characteristics of human skin, and then find out

how to use science to judge whether a person is

lying. Secondly, you should consider the design

of the robot by using the electronic components

learned in Unit 1. When the prototype is

completed, testing should be carried out. Finally,

you should improve your design based on the test

results. Throughout the project, students are

expected to acquire more knowledge on science

and engineering. It is also hoped that students can

improve their communication, problem solving

and leadership skills through collaboration with

the others.

Stage / step of

engineering

design

Relevant knowledge
Investigation and design

considerations

Applying the relevant

knowledge and

investigation results

Define the

problem

(confirm the

requirements

and limitations)

Understand the working

principle of lie detectors and

refer to the standards used

by current or previous lie

detectors

Determine the design

requirements and limitations

/

Research  The principle of electric

current and the different

conductivity of materials

 Conductivity of human

skin

 Effect of emotions,

environments and weather

on skin conductivity (e.g.

tension causes a decrease

in skin conductivity)

 Methods for measuring

skin conductivity

Select a handling method (for

example, if carried out in the

class, may choose one or more

items, depending on the

teaching aims, lesson time and

limitations on materials)
/

Design

consideration

 Choose Arduino as the

processor of this

experiment

 Use analogue signals to

measure skin conductivity

 Use LEDs and a buzzer to

show the responses of the

person when he/she is

being asked questions

Prediction:

When lying, the conductivity of

the skin is reduced due to

tension. Analogue signals can

effectively measure the changes

in skin conductivity

Test with the Arduino first

Testing model  Factors that affect skin

conductivity include

human perspiration,

environmental humidity

and emotions

 Design a circuit diagram

to measure the skin

Assume emotion is the major

factor that affects the

conductivity of human skin.

Conduct fair tests for the

remaining variables one by one

to verify the impact of each

variable on the effect

/

Basic Unit 1: Basic control of electronic components 40

conductivity according to

the voltage divider rule

(potential divider)

 Use a red LED, a green

LED and a buzzer to

show the responses of the

subject when being asked

questions

 Use a blue LED to show

the contact condition of

the lie detector

 Use a positioning tool to

reduce the error when the

lie detector is used on

different people

Fair tests:

To find out how human

perspiration affects skin

conductivity

 Independent variable: the

amount of perspiration of the

human body

 Dependent variable: skin

conductivity

 Control variables: exercise

volume, body temperature,

metabolism, etc.

To find out how different

environmental humidity affects

skin conductivity

 Independent variable:

environmental humidity

 Dependent variable: skin

conductivity

 Control variables:

temperature, weather,

ventilation, etc.

/

Solve problems

encountered

during the

design /

production /

testing

processes

The testing process shows

that to get better results and

more accurate measurement:

 the subject needs to be in

contact with the lie

detector constantly when

he/she is being asked

questions

 adjust the position of the

lie detector with the

positioning tool for each

user before use

 conduct the test at a place

with good ventilation

equipment

Regard these findings as the

necessary procedures for the

current engineering design

/

Analyse and

evaluate test

results and

problems

occurred

 The linear relationship

between voltage and

resistance [Ohm's law]

(engineering knowledge)

 The accuracy of the lie

detector

 Analyse data using Ohm's

law to assess whether the

design has achieved its stated

objectives

 According to the test results,

evaluate whether Ohm's law

is the key to success of the lie

detector

 Measuring the skin

conductivity as the only

condition for lie detection

gives inaccurate results

Based on the analysis and

evaluation results, find out

ways for improving the

design

Basic Unit 1: Basic control of electronic components 41

1 Circuit making of the lie detector

We set up the circuit of the lie detector as follows:

2 Exterior design of the lie detector

Students can design and make the housings for the lie detectors based on their own ideas to protect the

Arduino boards and other electronic components. The following is a reference of the housing for the lie

detector made of cardboard.

1.

2.

3.

4.

5.

6. Reserve a space for the USB
port on the housing

7.

8.

9.

Basic Unit 1: Basic control of electronic components 42

3 Programming the Arduino to make it work as a lie detector

Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development

board in the Tools menu and check whether the Communications Port is connected to the Arduino

already. After connecting the Arduino, we need to input the following program and upload it to the

Arduino.

The complete program codes for the lie detector. Refer to file 1_7_lie_detector.

Define the variables

Set the variables as output

and open the serial

communication channel

Use the analogue input to

change the error value

and detect lies by

measuring the amount of

water

When failing the test, the

buzzer sounds

Basic Unit 1: Basic control of electronic components 43

4 Operating principles

This lie detector assumes that the subject will sweat when lying, and sweating will change the

conductivity of the fingers slightly. Making use of this property, the Arduino can be programmed to

detect the changes when connected to the circuit, and make corresponding judgment. This is how this

lie detector works.

5 Program content explanation

1. Define the variables

In the first part, we define the variables. Firstly, the pin settings of the red, green and blue LEDs are 9,

10 and 11 respectively. We define pin 7 for the buzzer, and 14 and 15 for the two analogue pins. Finally,

we add the standard definition 25 obtained from testing.

2. Set the variables as output and open the serial communication channel

In the second part, we need to set the variables defined in the first part as output and input, such as the

red, green and blue LEDs, the buzzer and the two analogue pins. We will also open the serial

communication channel and set the transmission rate as 9600.

Basic Unit 1: Basic control of electronic components 44

3. Use the analogue input to change the error value and detect lies by measuring the amount of water

In the third part, we first read the values from the two analogue input pins with the function

'analogRead()'. If the values of the two contacts we obtain through the wires are larger than the pre-set

standard, we will turn on the red LED, sound the buzzer and print the line 'Lie detector fail.'. If the values

do not exceed the pre-set standard, the line 'Lie detector ready' and finally 'Lie test pass.' will be printed.

4. When failing the test, the buzzer sounds

In the fourth part, we configure a function called 'buzzer()'. We create a loop that repeats for a thousand

times, turning on and off the buzzer continuously to simulate the sound of an alarm.

