Technology Education Section
Curriculum Development Institute
Education Bureau
The Government of the HKSAR
May 2019

All comments and suggestions related to the resource materials may be sent to:
Chief Curriculum Development Officer (Technology Education)
Technology Education Section
Curriculum Development Institute
Education Bureau
Room W101, West Block, 19 Suffolk Road
Kowloon Tong
Hong Kong

The copyright of the materials in this package, other than those listed in the Acknowledgments section and the photographs mentioned there, belongs to the Education Bureau of the Government of the Hong Kong Special Administrative Region.
Schools and educational organisations are welcome to use the content of this package for non-profit making educational purposes. In all cases, proper acknowledgements should be made.
Otherwise, all rights are reserved, and no part of these materials may be used for publication or other purposes in any form without the prior permission of the Education Bureau.
© Copyright 2019

[bookmark: _GoBack]The learning resources is developed by the Robot Institute of Hong Kong.

Content
	Chapter 1: Basics of Robotics
	P.3

	Chapter 2: What Is Arduino?
	P.7

	Chapter 3: Arduino IDE (Software)
	P.11

	Chapter 4: Control (I) – LED Control
	P.17

	Chapter 5: Control (II) – Buzzer
	P.26

	Chapter 6: Control (III) – Motor
	P.33

	Chapter 7: Unit Project – Lie Detector
	P.39

 Basic Unit 1

 Basic control of electronic components
Chapter 1: Basics of Robotics
What is a robot?

Basic Unit 1: Basic control of electronic components		4

Basic Unit 1: Basic control of electronic components		20
When it comes to robots, many people will think of humanoid machines with hands and feet. However, this kind of machines tends to appear only in science fiction movies, entertainment venues, exhibitions and toy stores. They are very different from industrial robots.
Industrial robots (IRs), sometimes called robotic arms, can perform simple actions such as up-and-down motions, and grab and pick out components from machines. However, industrial robots can also perform more complicated tasks such as transportation, gripping, targeting, assembly and inspection.

[image: mage result for humanoid robot] [image: mage result for robotic arm]
The definition of a robot

A robot is officially defined by the Robot Institute of America in 1979 as 'a re-programmable, multi-functional manipulator designed to move materials, parts, tools, or special devices through variable programmed motions for the performance of a variety of tasks'. As long as a machine satisfies the criteria, it can be called a robot even if it does not have a
human form.
An industrial robot, which is usually referring to a robotic arm, consists of several links connected in series by linear, rotary or prismatic joints. At one end, the robot is fixed to a supporting base, and the other end is equipped with a tool and manipulated into position to perform tasks.

[image: 螢幕快照%202018-01-04%20上午9.26.13.png]Computer science
Autonomous judgment
Electronic engineering
Sensing, driving and calculating
Mechanical engineering
Interaction with the environment

Nowadays, robots are becoming popular for entertainment purposes and even for innovative technologies, such as those related to human life, animals and military purposes.
Therefore, a robot can also be defined as 'a human made semi- or fully autonomous (self-controlled) object or cooperating objects (with common objectives) with intelligence that is programmable'.

Design of industrial robots
Industrial robots are made up of six basic constituent elements, which are: the dynamic system, end-of-arm tools, computerised digital controller, actuators, feedback devices and sensors.
The following diagram shows the inter-relationship between these six elements:
[image: ets4-10-02]Dynamic system

Microcontroller
Micro Junior Secondary
Robotics Learning and Teaching Resources
Basic Unit 1: Basic control of electronic components
Targets
Program
Sensor
Feedback
Robotic arm
Linkages
(Equivalent to the human arm)
End-of-arm tool
(Equivalent to the human hand)
Rotational base
(Equivalent to the human body)
Joints
(Equivalent to the human joint)

Initially we upload the program to the microcontroller, which will then react to give corresponding outputs, for example to the robotic arm and the end effector. The microcontroller controls the various joints and the rotational base flexibly to perform high-precision actions and specific work goals. Then, the sensors of the robot will return some readings to the microcontroller. Finally, the microcontroller acts accordingly to achieve the work goals.

Development of robots and advancement of robotics
[image:][image: /Users/Andy/Desktop/螢幕快照 2018-01-01 上午11.35.27.png]The beginning of modern robots. Artificial intelligence laboratories were set up by advanced international universities and the first computer-controlled robotic arm was born.
The era of mass production of robots. Different countries began to design robots themselves and microprocessors were invented.
The intelligence of robot has been developed to a level where robots can perform intelligent activities such as playing chess and interacting with animals.
Robots were no longer limited to the industrial area and have penetrated into all aspects of society, such as military use, entertainment, and imitation of humans and animals.
Robots have become popular, and advanced technologies have been developed, such as the da Vinci surgical system, the robots sent to Mars by NASA for exploration, and the open source project Arduino.

Before 1950, robots were only characters in science fictions. 1960 marks the beginning of modern robots. Artificial intelligence laboratories were set up by advanced international universities such as the Massachusetts Institute of Technology. The first computer-controlled robotic arm was born during this period of time. From 1970, the world officially entered the era of mass production of robots. Different countries, especially those in Europe, began to design robots themselves. Microprocessors were also invented during this period of time. In 1980, scientists made a breakthrough to the bottleneck of robot development, where robots were developed to possess their own intelligence such that they can play chess or interact with animals. In 1990, robots were no longer limited to the industrial area and penetrated into all aspects of society, such as military use, entertainment, and imitation of humans and animals. In 2000, robots have become popular, and advanced technologies have been developed, such as the da Vinci surgical system, the robots sent to Mars by NASA for exploration, and the birth of the open source project Arduino.

Review questions
1. What is a robot?
2. What elements does robotics include?
3. What are the basic components of the design of a robot?
4. Can you describe the entire operation of a robot?
5. Can you give an overview of the development of robots?

Chapter 2: What Is Arduino?
I.
II. Understanding microcontrollers
Simply speaking, a microcontroller, MCU, is indeed a tiny computer containing a processor, memory, input/output units and other peripheral devices that is installed in a single integrated circuit. However, a microcontroller does not have a built-in operating system and thus it cannot operate like a computer. Programs need to be developed on other computer systems before they can be input to it.
II.
Various microcontrollers
The core of most early microcontrollers adopts Atmel AVR series developed by Atmel in 1996, which is a family of 8-bit to 32-bit automatic control reduced instruction set microcontrollers. AVR uses flash memory as the data storage medium for its single-chip microcontrollers, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time. The following are a few common microcontrollers.

	Arduino UNO

The microcontroller that will be used in this teaching resource. The entry barrier for this development board is low, and is easy for non-professional people to learn and use.
	[image: ARDUINO_UNO_A06.png]

	Intel Galileo

Famous computer processor manufacturer Intel has also developed microcontrollers. The characteristic of this development board is that it has pin positions compatible with Arduino UNO, and can be programmed with Arduino IDE.
	[image: 1200px-Embedded_World_2014_Intel_Galileo_01.jpg]

	Nucleo 64

The Nucleo development board consists of a 32-bit STMicroelectronics microprocessor, which has a higher processing power than Arduino, but is harder to use in comparison with Arduino.
	[image: STM32_Nucleo64_Development_Board_with_STM32L073RZT6_MCU_supports_Arduino_and_ST_morpho_connectivity.png]

	Udoo Dual

This is a development board that can load Windows 10 IoT. It is more powerful than Arduino UNO but more difficult to program.
	[image: single_board_computers.jpg]

	BeagleBone Black

This is a microcontroller development board produced by Texas Instruments in association with Digi-Key and Newark element14, which was released in 2011.
	[image: BeagleBone-Black-Rev.C_02.jpg]

I.
II.
What is Arduino?
[image: ARDUINO_UNO_A06.png]

Arduino was an assignment given to students of the Ivrea Interaction Design Institute in Italy in 2005, aiming to provide a low-cost, easy-to-use interface for students, amateurs or professionals to design interactive devices that consist of sensors and drivers.
Arduino is a computer control board that uses an Atmel AVR single-chip microcontroller. It can be connected to various input and output devices, and can be connected to a variety of communication modules. With suitable control programs, a wide range of automatic control applications can be made, for example, controlling the rotation speed of a fan according to the temperature, controlling the brightness of a light or the speed of a motor with a variable resistor, remote controlling home appliances with infrared or Bluetooth, controlling a robotic arm or robot with servo motors, and producing automatic vehicles and aircraft.
The most prominent feature of Arduino is that both its software and hardware are open-source. Traditionally, it is a prerequisite for the developer to possess a background in disciplines such as electronic or electrical engineering in order to develop a microcontroller program, which is not at all easy for ordinary people to take part in. Arduino has a low entry barrier, and is easy for ordinary people to learn and use. Furthermore, there are a lot of Arduino resources on the Internet to which people can refer, and as a result, they can complete their own works in a short time by adjusting the design according to their needs.
Circuit design diagrams of Arduino can be downloaded from the Internet, and there are reasonably priced Arduino control boards available for sale on the Internet.

IV. Arduino control boards (hardware)
Programming by connecting to a computer via USB
Arduino can be connected to a computer with the universal USB connection to facilitate users to write programs.
Online programming
Arduino uses an online programmer to load the boot loader to the control panel. It guides the operating system to initiate the program, which has the following advantages:
1. Simplify the programming process
2. Initiate when running the user's program
3. Inspect the solution on the development platform

The following diagram shows the various components on an Arduino control board, and the various input and output pins available.
[image: 第九章：生產過程.jpg]Reset button
ICSP pin
SCL
SDA
Digital output and input pins
ICSP pin
ATmega328
16 MHz quartz crystal
Analogue input pins (can also be used as digital output and input pins)
7 ~ 12 V power input socket
DC voltage regulation module
ATmega16U2
USB connector

V. Review question
1. What is Arduino UNO?

Chapter 3: Arduino IDE (Software)
I. Program installation and connection between the hardware and the software
Arduino IDE is the programming platform and environment for Arduino. A lot of different programming software can be used for Arduino but Arduino IDE that can be downloaded from arduino.cc will be focused in this teaching resource.
 [image: ArduinoCC.png]
Arduino IDE can be downloaded from www.arduino.cc

	[image: photo_2018-01-18_01-27-45.jpg]
Arduino installation file

II. Arduino IDE layout
1. Layout introduction
Message area
Toolbar
Code writing area

2. Descriptions of the toolbar buttons:
[image: 螢幕快照%202018-01-01%20下午4.34.37.png]Serial Monitor: Opens the serial monitor for communicating with the Arduino via the serial port.
New: Creates a new sketch (a program written using Arduino IDE).
Save: Saves your sketch.
Verify: Checks your code for errors before compiling it.
Open: Presents a menu of all the sketches in your sketchbook.
Upload: Compiles your code and uploads it.

III. Do it yourself – Understanding Arduino & Arduino IDE

This section is for students to familiarise themselves with the operation of the Arduino control board and Arduino IDE. For the computer to communicate with the Arduino control board, we must use the serial port. However, modern computers generally use USB ports and thus cannot communicate with the Arduino control board directly. To handle this, we need to use a USB-to-serial chip, commonly used types including ATmega8U2, CH340, CP2102, FTDI232R and PL2303. The official version of the Arduino control board contains an ATmega16U2 USB-to-serial chip, which can facilitate us to use the computer to communicate with the Arduino control board and burn programs.

[image:]ATmega16U2

This exercise uses the on-board LED of the Arduino, and does not need to connect to external units.

1. Open Arduino examples - LED Blink: Click File Examples 01.Basics Blink.
[image:]

1. The following program will appear after clicking Blink.
[image:]
This program consists of two main parts. In the first part, the code inside the setup() function configures the Arduino's on-board LED as an output (OUTPUT). In the second part, the code inside the loop() function turns the on-board LED on and off continuously.

1.
2.
3. Then plug in the USB cable to connect the Arduino control board with the computer.

4. After connecting to the computer, we must first open the Control Panel of the computer > Device Manager to find the Communications Port (also known as Serial Port) of the Arduino board. The figure below shows the Communications Port (COM9) of the Arduino UNO found in the Device Manager.
[image:]

5. In Arduino IDE Tools Board: select Arduino UNO development board.

6. In Arduino IDE, select the Communications Port of the Arduino UNO found in the Device Manager above.
[image:]

7. Press the Upload button. The program will be compiled and uploaded to the Arduino UNO development board.

8. When the upload is done, you should see the Arduino's on-board LED begins to blink.
[image:]

IV. Review questions
1. What is Arduino IDE?
2. How to connect the Arduino control board to the computer, and make them communicate?

Chapter 4: Control (I) – LED Control
I. Light-emitting diode, LED

A light-emitting diode is the most basic and commonly used output device. Its illuminating property can be used to indicate the status, for instance, the lighting up of a green LED and a red LED can be used to indicate a qualified condition and an unqualified condition respectively. In addition, it can be used for program testing. As a program is executed from top to bottom, if we would like to test whether a part of commands has been executed, we can add some codes under that part of commands for flashing an LED. If the LED flashes, it means that part of commands has been executed. Furthermore, we can test the strength of a signal. For example, we can use the received signal as the brightness of the LED. Then we can judge the signal strength with the naked eye. We can use LEDs and programming to carry out all of the above functions

[image:]

Anode (+)

Cathode
 (-)

An LED is a kind of unidirectional hardware, i.e. we need to connect it according to the current of a circuit; otherwise, it will not light up. An LED usually has two leads, one long and one short. The long one is called the anode and the short one is called the cathode. The direction of the current should flow from the anode to the cathode.
Since LEDs have a small size, do not heat up and are more robust, in contrast to traditional light bulbs that are solely used for lighting, LEDs are widely used as the signal indicators of electronic products. In this section, the LEDs we are going to use are commonly seen small LEDs with a range of colour choices such as red, orange, yellow, green and blue.

II. Different parts of an Arduino program
[image: 3.png]Content between /* and */ is the remark written by the programmer which will not be executed.
Setup(): a function that will be executed once. Pin 13 is configured as the output pin here.
Content after // will not be executed also.
Loop(): a function that will be executed over and over again until the power is cut off.

III. Different parts of a function
Different parts of a function written in C/C++ programming language.
[image: 螢幕快照%202018-01-01%20下午6.04.28.png]Output of the function: 'void' means no output
Name of the function
Input of the function: () means no input
All commands of a function need to be placed between { and }
The command that a function needs to complete should end with a ';', e.g. a = a + b;

pinMode(13, OUTPUT);
pinMode – calls the function to define the mode of the pin. The function first specifies the pin number (1 ~ 13 or A0 ~ A5), followed by the action (INPUT, OUTPUT or INPUT_PULLUP). INPUT: input; OUTPUT: output; INPUT_PULLUP: enables the pull-up resistor of this pin and provides a stable 5V voltage.
digitalWrite(13, HIGH);
digitalWrite – Calls the function to define the pin as a digital output to be written with a 5V or 0V value. The function first specifies the pin number (1 ~ 13 or A0 ~ A5), followed by the write action (LOW or HIGH). HIGH: high electric potential (5V); LOW: low electric potential (0V).

delay(1000);
Delay – Calls the function to define a delay time of 1000 ms (must use milliseconds (ms) as the unit).

Throughout the programming process, we will need to record some data, which may be text or numbers. We record these data at an address in the memory and give them names. These are variables. The following are some variables commonly used in Arduino programs.

	Type
	Memory size
	Value

	boolean
	8 bit (1 byte)
	

	byte
	8 bit (1 byte)
	

	char
	8 bit (1 byte)
	

	int
	16 bit (2 bytes)
	

	long
	32 bit (4 bytes)
	

	float
	32 bit (4 bytes)
	

IV. Do it yourself – LED blink
The first task of this chapter is to try to control the blinking of an LED with the Arduino. There are two parts in this task, which are to connect the Arduino with the LED and to program the Arduino to control the LED.
1 Connecting the Arduino and the LED
We connect the LED, resistor and the Arduino as follows.

220 ohm resistor

Not many electronic parts are required for this task and the connection method is very simple. First, we attach a red LED to a breadboard. Note that the leads of an LED are different in lengths. The longer one is the anode and the shorter one is the cathode. To light up an LED, the current must flow from the anode to the cathode. Therefore, when the LED is on, the anode must be at a high potential and the cathode must be at a low potential. In this task, the anode and cathode of the LED are connected to pin 13 and GND (ground) of the Arduino board respectively. A resistor is connected between the LED and the Arduino board for limiting the current flowing through the LED, so that there will not be overcurrent affecting the operation of the LED.

[image: C:\Users\alviswyyip\Desktop\Breadboard.jpg]5 connected nodes in a vertical column
25 connected nodes in a horizontal row

Understanding a breadboard:
A breadboard allows connection of electronic components used in a circuit with no soldering required.

1. Power rails: The breadboard shown in the above figure has two rows of holes at the top and bottom respectively. They are generally used for providing power supply. The row marked with '+' at the top has 25 interconnected holes and all of them are positive pole. The second row at the top marked with '–' is for connecting to the ground. The first and second rows at the bottom have the same configuration as those at the top of the breadboard.
2. Terminal strips: The connection holes on the breadboard shown in the above figure are divided into upper and lower parts, which are the main working area for connecting the electronic components and jumper wires. The five holes in the same vertical column (i.e. a-b-c-d-e or f-g-h-i-j) are interconnected. However, there is no connection between the vertical columns (i.e. 1-30), and between the upper and lower parts of the ravine (i.e. e-f).

2 Programming the Arduino to control the LED
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already.

After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete program codes. Refer to file 1_4_1_led_flash.

Define the variable
Define the pin for the LED
Set the blinking frequency of the LED

3 Program content explanation
1. Define the variable
[image:]
The program is divided into three parts. In the first part, we define variable 'ledPin' to be an integer 13. An integer is one of the data types in a program. To define an integer variable, we need to add 'int' before the variable.

2. Define the pin for the LED
[image:]
In the second part, we define the pin of the Arduino that is connected to the LED. In the previous part, variable 'ledPin' is defined as integer 13. In this part, we use 'pinMode ()' to define pin 13 as an output pin.

3. Set the blinking frequency of the LED
[image:]
Assuming that the LED blinks once every two seconds, that means the time the LED is set to turn on and off is one second each. We use 'digitalWrite()' in the program to control the LED: when 'digitalWrite' is set as HIGH, the LED turns on; when 'digitalWrite' is set as LOW, the LED turns off. 'delay()' is used to pause the program for a specific amount of time (in milliseconds). There are 1000 milliseconds in a second.

1.
2.
3.
4. When the program is uploaded to the Arduino UNO, the red LED on the breadboard will turn on for one second and off for the next, and repeat over and over.

V. Do it yourself – Traffic light
The second task of this chapter is very similar to the first one. In this task, we will try to control three LEDs of different colours to light up one after another, imitating the traffic lights we often see in our daily life.
1 Connecting the Arduino and the LEDs
We connect the LED, resistor and the Arduino as follows.

The way to connect the LEDs in this task is the same as that in the first task. The anodes of the LEDs are connected to the Arduino and the cathodes are connected to GND. Since there are three LEDs to be controlled in this task, we need to use three pins on the Arduino to connect the LEDs, which are pins 11, 12 and 13.

2 Programming the Arduino to control the traffic light
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete codes of the traffic light program. Refer to file 1_4_2_traffic_light.

Define the variables
Define the pins for the LEDs
Set the blinking sequence and frequencies of the LEDs

3 Program content explanation
1. Define the variables
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_4.png]
We define three variables in this part, namely, 'ledPin_R', 'ledPin_Y' and 'ledPin_G. The three variables store the integers 13, 12 and 11 respectively.

2. Define the pins for the LEDs
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_4.png]
In the second part, we define the pins of the Arduino to which the LEDs will connect. We use 'pinMode()' to define pins 11, 12 and 13 as the output pins.
3. Set the blinking sequence and frequencies of the LEDs

The sequence for the LEDs to blink depends on the colours of the LEDs and is set to be in the order of red, yellow and green. The duration for each LED to light up is one second. When an LED is turned on, the LED that turns on previously will turn off. We use 'delay(1000)' to control the on and off duration of the LEDs, and 'digitalWrite()' to control the order in which the LEDs are turned on and off.

Review questions
1. What is an LED?
2. What are pinMode, int x = 3;?

Chapter 5: Control (II) – Buzzer
I. Sound-producing objects and sound

In addition to emitting light, it is also common for electronic software to generate sounds. Sound-producing objects can generally be categorised into two types: speaker and buzzer. A buzzer is small and flexible. However, since its sound quality is poorer, it is more suitable to be used in alarm devices or devices that produce sounds for drawing attention. A small speaker is larger than a buzzer. Making use of the vibration of a paper film, the sound quality of speakers is higher than that of buzzers. Therefore, speakers are more suitable for electronic products that need to produce precise pitches such as robots, electronic keyboards and mechanical assistants. The following diagram shows a buzzer.

[image: uzzer module的圖片搜尋結果]

The main component of a buzzer is the diaphragm. The diaphragm consists of a thin copper plate. When a current is applied, electromagnetic force will be produced to make the copper plate vibrate. Sound is caused by vibration, and the frequency of the vibration is called audio frequency. With a formula, we can find out the notes on conventional music scale that various audio frequencies refer to. Before writing a music program, let's review some fundamental music knowledge.

II. Pitch and beat

The level of audio frequency is called pitch. In music, we use Do, Re, Mi and other phonetic names to represent pitches of various frequencies. The keyboard on a piano is arranged according to the audio frequency, in the order of musical scales such as C, D and E. The frequency of a specific pitch is exactly twice of that in the previous octave (note: the 8th white key to the right of the middle C 'Do' is the 'Do' an octave above middle C 'Do').

Frequency is a standard of vibration measurement. Sound is a waveform and each sound has its specific frequency. The sharper the sound, the higher the frequency; the deeper the sound, the lower the frequency.
Time
Low frequency

High frequency
Deeper sound

Sharper sound

[image: 螢幕快照%202018-01-04%20上午9.47.43.png]

[image: 螢幕快照%202018-01-04%20上午9.47.58.png]

The task in this chapter is to use new syntax to control a buzzer, including 'for' loop and array.
III. 'for' loop
To get started, let's understand the syntax of a 'for' loop:
for（initial variable; conditional statement; count statement）{
statement 1;
statement 2;
}

When setting the loop, the first thing we should decide is exactly how many times we want the loop to repeat. Suppose we want to repeat three times, example: for（byte i = 0 ; i < 3 ; i++）{ }. In the first loop, the variable i has a value of zero. When the first loop is executed completely, the variable i will increase by one and the second loop will be executed. Finally, the variable i will increase by one again and the third loop will be executed. As i needs to be smaller than 3, the loop stops after the third loop is completed.
From the loop syntax, we know that there are four parts we need to set in a 'for' loop. The first thing is to write 'for'. Then we need to set the initial value of the variable, which is usually set as 0. After representing the variable, we need to set the execution condition. In the example, we set the condition that the variable is smaller than 3, so that the loop can repeat three times. Finally, we need to set the method for determining the number of repetition. We know that if the variable is equal to 3, the loop will stop. If the variable is incremented by one each time, a total of 3 times will be run from 0 to 3. So we set the variable to be incremented by one each time. Eventually, write the program we need to execute repeatedly to finish the loop.
In the previous paragraph, we mention that the initial value is usually set as 0, but there are exceptions, for example, when we want to define the LEDs connected to pin 8 to pin 10 in turn. We can define the pins as output in the program, then we can use variable i to handle the logic. During the process, the pin number to be defined is incremented each time starting from 8 and ending at 10. In the first run, the variable is 8; in the second run, the variable becomes 9; in the third run, the variable becomes 10. In this way, we can reduce the size of the program and avoid repeating the same program codes.

	void setup() {
		for (byte i = 8 ; i <= 10 ; i++) {
			pinMode (i, OUTPUT);
		}
	}

IV. Array

Before discussing array, let's first find out how a variable stores a value. In this part, we can think of variable as a box. To define a variable, we are giving a name to the box. Suppose an undefined variable is an empty box. After we define it, the box will store a value. In normal circumstances, one of these boxes can store only one value. If we need to store 10 values in a program, we need to write 10 statements; if we need to store 100 variables, we need to declare 100 times. Such a program is very inefficient. To handle such situations, we can use an array, i.e. to define a certain amount of similar boxes in one time. For instance, the following syntax means that the box can store 4 integers.

int Nums[4];（data type array name[array size] ;）

	Nums
	[0]
	[1]
	[2]
	[3]

V. Do it yourself – Buzzer
In this chapter, we will try to use Arduino to control a buzzer to play music. The task consists of two parts: connecting the Arduino and the buzzer, and programming the Arduino to play music with the buzzer.
1 Connecting the Arduino and the buzzer
We connect the buzzer and the Arduino as follows.
[image: 1.5/melody_fritzing_bb.png]

The way to connect the buzzer to the Arduino is very simple and straightforward. As the buzzer has high resistance itself, no extra electronic component is required when using the buzzer. The buzzer also has an anode and a cathode. The anode and cathode are usually marked with a red wire and a black wire respectively. We need to connect the anode and cathode of the buzzer to pin 11 and GND of the Arduino respectively.

2 Programming the Arduino to play music with the buzzer
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete music playing program codes. Refer to file 1_5_play_music.

Use a loop to play the song
Define the variables and arrays
Define the functions
Define the pin for the buzzer

3 Program content explanation
1. Define the variables and arrays
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_5.png]

We define three variables and two arrays in this part. The three variables are 'buzzerPin', 'notes_length' and 'tempo'. 'buzzerPin' stores an integer of 11, representing the pin number of the Arduino to which the buzzer is connected. 'notes_length' stores an integer of 25, representing the total number of notes in the song. 'tempo' stores an integer of 300, representing the length of a beat. The two arrays are 'notes[]' and 'beats[]'. 'notes[]' stores different English letters, which represent the notes in the song. 'beats[]' stores the lengths of the notes. When the value of the tempo is multiplied by each item in the array beats[], the result obtained is the time each note is played.

2. Define the functions
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_5.png]
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_5.png]

We define two functions, namely 'playTone()' and 'playNote()', in this part. Function 'playNote()' is responsible for setting the frequency of each note according to the English letters in array 'notes[]'. Function 'playTone()' is responsible for playing the song. Using 'tone()', we can play the song with the buzzer connected to the pin defined in 'buzzerPin' according to the frequencies calculated in function 'playNote()'; using 'noTone()', we can stop the buzzer from playing the song. In the 'for' loop, the number of loops is set according to the length of the song, and the song is played according to the length of the music scales.

3. Define the pin for the buzzer
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_5.png]
In this part, we use 'pinMode()' to define pin 11 set in 'buzzerPin' as the output pin.
4. Use a loop to play the song
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_5.png]

In the fourth part, we use a 'for' loop from 0 to 25 to play all the notes defined in 'notes[]' once in the program. There is an if-else condition set in this loop. The if condition is to check whether there are blank spaces in array 'notes[]'. If a blank space occurs, the program will treat it as a rest; if it is not a blank space, the program will treat it as a normal note. At the end of the program, there is a waiting of 'delay(1000)', which functions as a pause between songs, making it easier for us to listen to the song.

VI. Review questions
1. What is a 'for' loop?
2. What is an array?
3. What is a buzzer?
4. What are tone(), noTone()?

Chapter 6: Control (III) – Motor
1. Understanding direct current (DC) motors
[image: dc.png]Coil
Rotational shaft
Permanent magnet

There are many types of motors. The one used in this chapter is the DC motor, also known as the yellow motor. The indispensable parts of a motor include a permanent magnet and a coil. A magnetic field will be generated when power is supplied to the coil, and the permanent magnet in the middle will rotate according to the magnetic field. The same current will cause the motor to turn in the same direction, allowing the motor to rotate. Following this logic, if the power supply is connected in reverse, the motor will rotate in the reverse direction.

[image: 123.jpg]

There are only two connections on a yellow motor or a DC motor, one for power supply and the other for connecting to the ground. However, the servo motor we will user later, which provides high stability, may have four to six connection wires for setting the number of turns or angle of rotation of the motor. Such highly precise operations are typically used for industrial control, such as robotic arms and photocopiers.
Except electrical appliances such as electric fans, hair dryers and power drills that connect the motor to the load (example: fan blades) directly, most power devices use mechanical systems such as gearboxes and pulleys to reduce the motor speed or convert the direction of the power output to increase the torque.

The H-bridge motor control circuit for controlling the forward and backward rotation of a motor

[image: -bridge的圖片搜尋結果]

From the introduction of motors above, we understand that if we want to reverse the rotation direction of a motor, we need to reverse the flow of the current. However, in real situations, we cannot control a robot in this way. Therefore, we need to have an additional motor driver attached to the motor for changing the rotation direction of the motor. This motor driver is known as an H-bridge motor controller. With this control method, we can see from the above figure that the motor is surrounded by four switches. The operation method is as follows: in the first condition, when switches 2 and 3 are closed, the motor will have a leftward rotation; in the second condition, when switches 1 and 4 are closed, the motor will have a rightward rotation.

Do it yourself – Motor control

This chapter expects students to complete a task for controlling a motor. Generally speaking, to control a motor, a motor driver is required. A motor has two rotation directions: clockwise and anticlockwise, which correspond to different directions of current flow respectively. Therefore, if we want to program the motor to rotate in a clockwise or anticlockwise direction to achieve the task, we must use a motor driver.

1 Connecting the Arduino, the DC motor and the motor driver
We connect the Arduino, the DC motor and the motor driver as follows.

[image:][image:]Motor 2
Motor 1

Enlarged view of the motor driver

2 Programming the Arduino to operate the motor with the motor driver
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete dual DC motor program codes. Refer to file 1_6_two_dc_motor.

[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_6.png]Main program
The control logic on the motor driver
Define the pins as output
Define the pins

3 Program content explanation
1. The first part defines the pins, allowing us to write the program promptly.
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_6.png]

2. The second part sets the working mode of the pins, which in this case is for communicating with the motor driver. The Arduino UNO sends data to the motor driver, so the pin modes are set as output.
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_6.png]

3. The repeating part instructs the motor to move forwards for two seconds, move backwards for two seconds and then stop for one second. Then the whole action is repeated.
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_6.png]

These codes define the actions according to the signals received by the motor driver. For example, when all IN1, IN2, IN3 and IN4 are at low voltage, the motor will be stopped.
[image: C:\Users\alviswyyip\Desktop\program@screenshot\1_6.png]

Review questions
1. What is a DC motor?
2. What is an H-bridge motor control?

Chapter 7: Unit Project – Lie Detector

Robotics covers a range of elements, including science, technology and engineering. When conducting the unit project, students need to apply knowledge of various disciplines. For example, firstly, you should start with scientific research, studying the principle of electric current and the characteristics of human skin, and then find out how to use science to judge whether a person is lying. Secondly, you should consider the design of the robot by using the electronic components learned in Unit 1. When the prototype is completed, testing should be carried out. Finally, you should improve your design based on the test results. Throughout the project, students are expected to acquire more knowledge on science and engineering. It is also hoped that students can improve their communication, problem solving and leadership skills through collaboration with the others.

	Stage / step of engineering design
	Relevant knowledge
	Investigation and design considerations
	Applying the relevant knowledge and investigation results

	Define the problem
(confirm the requirements and limitations)
	Understand the working principle of lie detectors and refer to the standards used by current or previous lie detectors
	Determine the design requirements and limitations
	/

	Research
	· The principle of electric current and the different conductivity of materials
· Conductivity of human skin
· Effect of emotions, environments and weather on skin conductivity (e.g. tension causes a decrease in skin conductivity)
· Methods for measuring skin conductivity
	Select a handling method (for example, if carried out in the class, may choose one or more items, depending on the teaching aims, lesson time and limitations on materials)
	/

	Design consideration
	· Choose Arduino as the processor of this experiment
· Use analogue signals to measure skin conductivity
· Use LEDs and a buzzer to show the responses of the person when he/she is being asked questions
	Prediction:
When lying, the conductivity of the skin is reduced due to tension. Analogue signals can effectively measure the changes in skin conductivity
	Test with the Arduino first

	Testing model
	· Factors that affect skin conductivity include human perspiration, environmental humidity and emotions
· Design a circuit diagram to measure the skin conductivity according to the voltage divider rule (potential divider)
· Use a red LED, a green LED and a buzzer to show the responses of the subject when being asked questions
· Use a blue LED to show the contact condition of the lie detector
· Use a positioning tool to reduce the error when the lie detector is used on different people
	Assume emotion is the major factor that affects the conductivity of human skin. Conduct fair tests for the remaining variables one by one to verify the impact of each variable on the effect
	/

	
	
	Fair tests:
To find out how human perspiration affects skin conductivity
· Independent variable: the amount of perspiration of the human body
· Dependent variable: skin conductivity
· Control variables: exercise volume, body temperature, metabolism, etc.
To find out how different environmental humidity affects skin conductivity
· Independent variable: environmental humidity
· Dependent variable: skin conductivity
· Control variables: temperature, weather, ventilation, etc.
	/

	Solve problems encountered during the design /
production /
testing processes
	The testing process shows that to get better results and more accurate measurement:
· the subject needs to be in contact with the lie detector constantly when he/she is being asked questions
· adjust the position of the lie detector with the positioning tool for each user before use
· conduct the test at a place with good ventilation equipment
	Regard these findings as the necessary procedures for the current engineering design
	/

	Analyse and evaluate test results and problems occurred
	· The linear relationship between voltage and resistance [Ohm's law] (engineering knowledge)
· The accuracy of the lie detector
	· Analyse data using Ohm's law to assess whether the design has achieved its stated objectives
· According to the test results, evaluate whether Ohm's law is the key to success of the lie detector
· Measuring the skin conductivity as the only condition for lie detection gives inaccurate results
	Based on the analysis and evaluation results, find out ways for improving the design

1 Circuit making of the lie detector
We set up the circuit of the lie detector as follows:
[image:]

2 Exterior design of the lie detector
Students can design and make the housings for the lie detectors based on their own ideas to protect the Arduino boards and other electronic components. The following is a reference of the housing for the lie detector made of cardboard.
	1. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-37.jpg]

	2. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-32.jpg]

	3. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-29.jpg]

	4. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-30.jpg]

	5. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-25.jpg]

	6. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-28.jpg]Reserve a space for the USB port on the housing

	7. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-27.jpg]

	8.
[image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-23.jpg]
	9.
[image: ../Downloads/Telegram%20Desktop/photo_2018-01-18_03-34-24.jpg]

3 Programming the Arduino to make it work as a lie detector
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete program codes for the lie detector. Refer to file 1_7_lie_detector.

Define the variables
Set the variables as output and open the serial communication channel
Use the analogue input to change the error value and detect lies by measuring the amount of water
When failing the test, the buzzer sounds

4 Operating principles
This lie detector assumes that the subject will sweat when lying, and sweating will change the conductivity of the fingers slightly. Making use of this property, the Arduino can be programmed to detect the changes when connected to the circuit, and make corresponding judgment. This is how this lie detector works.
5 Program content explanation
1. Define the variables
[image:]
In the first part, we define the variables. Firstly, the pin settings of the red, green and blue LEDs are 9, 10 and 11 respectively. We define pin 7 for the buzzer, and 14 and 15 for the two analogue pins. Finally, we add the standard definition 25 obtained from testing.

2. Set the variables as output and open the serial communication channel
[image:]
In the second part, we need to set the variables defined in the first part as output and input, such as the red, green and blue LEDs, the buzzer and the two analogue pins. We will also open the serial communication channel and set the transmission rate as 9600.

3. Use the analogue input to change the error value and detect lies by measuring the amount of water
[image:]
In the third part, we first read the values from the two analogue input pins with the function 'analogRead()'. If the values of the two contacts we obtain through the wires are larger than the pre-set standard, we will turn on the red LED, sound the buzzer and print the line 'Lie detector fail.'. If the values do not exceed the pre-set standard, the line 'Lie detector ready' and finally 'Lie test pass.' will be printed.

4. When failing the test, the buzzer sounds
[image:]
In the fourth part, we configure a function called 'buzzer()'. We create a loop that repeats for a thousand times, turning on and off the buzzer continuously to simulate the sound of an alarm.

image2.jpeg

image3.jpeg

image4.png
HmIE
BIRIEEE)

EFIE BRI
[RKFE - BEEN - 5HE B E/FIER

image5.png
Program

Computerized digital

controller

Y

Servo drive
system

Y

Dynamical
system

— — — >

End-of-arm
tools

——— >

Feedback system

Sensors

Y

¢ — — —

Target

image6.png
—un
)

s wAmm
noxs
AR

L]

image7.png
—un
)

s wAmm
noxs
AR

L]

image8.png

image9.png
BWHACBEBEE » BHS%
SERMRRER » g - tiS(E%g 5
MR XEAZEE N E LR

WA - BHRESR - Arduino

BRARE TREELSEN T RS SEANERR BA - BNREERR
WRABBNRREGAMNAETEEZTHNEN - I | TRISIENETES

RBAE B TR AR A TREZA SR

BRRMRMARES - ERTEABHUATEERRER S ERMSHMRE0EE

‘ | e) |
1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 199 1995 2000 2005 2010 2015

<
2020 2005 20

image10.png
)
SMD_EDITION

O OLUNO

"".‘: ARDUINO

image11.jpeg
I
i

image12.png

image13.jpeg

image14.jpeg

image15.jpeg
ICSP #H MM - AR
SCL SDA

e

USB #5538

Sl % 1CSP 2

"‘": ARDUINO

ATmegal6U2

EHRBE

Y) | IR ATmega328

7~ 12V BRAANIEE o
SBELE AR - TREIE
RBAAL - AR

image16.png
Download the Arduino IDE

ARDUINO ARDUINO 1.8.5 Windows app Requ
e cpe-soce Atan ot 00 makes sy 10
ek o s ot o e Ko
Windons M CLX 40 Lk o e
s -
Lovcesmar
WHAT IS Tt vy Ao Unuxaztis

et the CatingSarted pge o staation Linux s bts

i tctars. Linuxaou

HOURLY BUILDS BETA BUILDS BETA

ourioa previewof thencoming rlsse wih e s Donioas e Betavesionof the i OE i
s estres st expeimenafestures T vrsio shod NOT b sedin
producion.
LEARN ARDUIN! Windows Wndows
e acOX ac 05X Movnianon o)

DONATE

. ARDUINO -
NI

image17.jpeg
Pin to Quick Copy
access

v

20 items

Home Share View Manage ~ @
== ¥ it l L x -I - 97 New item ~ W Open ~ HH selectall
W Copy path £ Easy access ~ [edit 11 select none
Paste . Move Copy Delete Rename New Properties B
[f] Pasteshortcut | (L (o o) Tolder " o History £ Invert selection
Clipboard Organize New Open Select
v 4 > ThisPC > Acer(C:) > Program Files (x86) > Arduino v U Search Arduino p
O
—_
f e
»
drivers examples hardware java lib libraries reference
[N [
1 |
= -% pr. |
. (©.0)
| (2 (2
- .’ - -‘
tools tools-builder arduino.exe arduino.l4j.ini arduino_debug. arduino_debug.l arduino-builder.
exe 4jini exe
—h D N D, A
-
libusb0.dIl msvep100.dil msvcr100.dll revisions.txt uninstall.exe wrapper-manife

1item selected 395 KB

stxml

n

image18.png
ERRAER

Arduino IDERRZR

sketch_janO1a | Arduino 1.8.5

sketch_jan01la

o1d setupt

a8 —r=
// put your setup code here, to run once: RTE
}
o -
void loop() { A REE

// put your main code here, to run repeatedly:

TR

Arduino/Genuino Uno f /dev/cu.Bluetooth-Incoming-Port

ArduinotR &8 & B IS 4Rk

image21.png
ERRAER

Arduino IDERRZR

sketch_janO1a | Arduino 1.8.5

sketch_jan01la

o1d setupt

a8 —r=
// put your setup code here, to run once: RTE
}
o -
void loop() { A REE

// put your main code here, to run repeatedly:

TR

Arduino/Genuino Uno f /dev/cu.Bluetooth-Incoming-Port

ArduinotR &8 & B IS 4Rk

image19.png
Verify: @28

Upload: L{#i#Ri#&mizst

New: Ff#fifgst

Open: {IHEAMER

Save: FhEEt

Serial Monitor: 38471242 Arduino &i&

image20.png
ocn® romema
=9 T i
T

DIGITAL (PWM~)

mm ARDUINO

1234.circuits. do - Kado in SP - Rev 3.0

~ POWER ANALOG IN
e . i)

c onam

s
§ gdaez
@

image22.png
File Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+O
Open Recent >
Sketchbook >
Examples 3
Close Ctrl+W
Save Ctrl+S
Save As... Ctrl+Shift+S
Page Setup Ctrl+Shift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Ctrl+Q
7 77 put your Tig
8
9}
<

a
Built-in Examples
01.Basics

02.Digital

03.Analog
04.Communication
05.Control
06.Sensors
07.Display

08.5trings

09.USB
10.StarterKit_BasicKit
11.ArduinolSP

Examples for any board

Adafruit PWM Servo Driver Library
Bridge

Esplora

Ethernet

Firmata

GSM

LiquidCrystal

sSD

Servo

SpacebrewYun

Stepper

Temboo

TFT

WiFi

Examples for Arduino/Genuino Uno
EEPROM

SoftwareSerial

SPI

Wire

AnalogReadSerial
BareMinimum

Blink
DigitalReadSerial
Fade
ReadAnalogVoltage

image23.png
s=mn

FEEE =t

11K A Aa- fe s

@ Blink | Arduino 185
File Edit Sketch Tools Help

Blinks

%
25 // the setup function runs once when you press reset or power the board

26 void setupO) {

27 // initialize digital pin LED_BUILTIN as an output.

28 pinMode(LED_BUILTIN, OUTPUT);

29}

30

31 // the loop function runs over and over again forever

32 void loopO {

33 digitalWirite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
34 delay(1000); /7 wait for a second

35 digitalWrite(LEDBUILTIN, LON); // turn the LED off by making the voltage LOW
36 delay(1000); /7 wait for a second

37}

38

B

or pover the bourd WENE

L e a o LEDe s H
N pitode(L£D, 2y i WA =
BER Jell
t43F 10012 EF -————+ 110%
PS
Wl 3 el
E1E #1E 1BEF B Px@E
Toutton was not pressed! !
button was not pressed! 11
B button was. pressed! 11111
221 BAH HBHE & X (&) -—————+ 110%

955 |
3/5/2018 ||

ZH L e

image24.png

image28.png

image25.png
File Action View Help
e m B Hm e &S

4-3J LAPTOP-ETCEGEMT
1> - Computer
- Disk drives
B, Display adapters
&3 DVD/CD-ROM drives
» 8 Human Interface Devices
5 IDE ATA/ATAPI controllers
&= Keyboards
- Mice and other pointing devices
I Monitors
b & Network adapters
473 Ports (COM & LPT)
§ Arduino Uno (COM9)
» |2 Processors
£ Sound, video and game controllers
1 System devices
b @ Universal Serial Bus controllers

image26.png
© Blink | Arduino 1.8.1 - O X

File Edit Sketch Tools Help

Archive Sketch

Blink Fix Encoding & Reload v
Serial Monitor Ctrl+Shift+M
23 Serial Plotter Ctrl+Shift+L .
24 /] the| WiFi101 Firmware Updater you press reset or power the board
258 S Ezzr:d“.cg:j:lllno/Genumo Uno i Boards Manager...
26 /] 1 Get Board Info Ardu.mo YR EeETEs
Arduino Yun
27 p inM Programmer: "AVRISP mkIl" >/ ® Arduino/Genuino Uno
28) Burn Bootloader Arduino Duemilanove or Diecimila
Arduino Nano
29 Arduino/Genuino Mega or Mega 2560
30 // the loop function runs over and ¢ Arduino Mega ADK
Arduino Leonardo
3le loop() { Arduino Leonardo ETH
32 digitalWrite(,)s 2:3:::2/;72:20 Miere is the voltage level)
33 delay(1000); Arduino Mini
N L . Arduino Ethernet))
34 digitalWrite(,); Arduino Fio aking the voltage LOW
35 delay(1000); Arduino BT
R LilyPad Arduino USB
36 } LilyPad Arduino v
< Arduino Pro or Pro Mini >

Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

Adafruit Circuit Playground
Arduino Yan Mini

Arduino Industrial 101
Linino One

Arduino Uno WiFi

Arduino ARM (32-bits) Boards Arduino/Gentino Uno on COMA
Arduino Due (Programming Port)

image31.png
© Blink | Arduino 1.8.1 - O X

File Edit Sketch Tools Help

Archive Sketch

Blink Fix Encoding & Reload v
Serial Monitor Ctrl+Shift+M
23 Serial Plotter Ctrl+Shift+L .
24 /] the| WiFi101 Firmware Updater you press reset or power the board
258 S Ezzr:d“.cg:j:lllno/Genumo Uno i Boards Manager...
26 /] 1 Get Board Info Ardu.mo YR EeETEs
Arduino Yun
27 p inM Programmer: "AVRISP mkIl" >/ ® Arduino/Genuino Uno
28) Burn Bootloader Arduino Duemilanove or Diecimila
Arduino Nano
29 Arduino/Genuino Mega or Mega 2560
30 // the loop function runs over and ¢ Arduino Mega ADK
Arduino Leonardo
3le loop() { Arduino Leonardo ETH
32 digitalWrite(,)s 2:3:::2/;72:20 Miere is the voltage level)
33 delay(1000); Arduino Mini
N L . Arduino Ethernet))
34 digitalWrite(,); Arduino Fio aking the voltage LOW
35 delay(1000); Arduino BT
R LilyPad Arduino USB
36 } LilyPad Arduino v
< Arduino Pro or Pro Mini >

Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

Adafruit Circuit Playground
Arduino Yan Mini

Arduino Industrial 101
Linino One

Arduino Uno WiFi

Arduino ARM (32-bits) Boards Arduino/Gentino Uno on COMA
Arduino Due (Programming Port)

image27.jpeg
sketch_mar0dz

void setup() {
/1 put your §

I
woid loop() {

11 put your 1

@ sketch_mar04a | Arduino 1.8.4 = [m] X
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: *Arduino/Genuino Uno" >
Port 3 Serial ports

Get Board Info COM9 (Arduino/Gen
Programmer: "AVRISP mKil" >

Burn Bootloader

image33.png
s=mn

FEEE =t

11K A Aa- fe s

@ Blink | Arduino 185
File Edit Sketch Tools Help

Blinks

%
25 // the setup function runs once when you press reset or power the board

26 void setupO) {

27 // initialize digital pin LED_BUILTIN as an output.

28 pinMode(LED_BUILTIN, OUTPUT);

29}

30

31 // the loop function runs over and over again forever

32 void loopO {

33 digitalWirite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
34 delay(1000); /7 wait for a second

35 digitalWrite(LEDBUILTIN, LON); // turn the LED off by making the voltage LOW
36 delay(1000); /7 wait for a second

37}

38

B

or pover the bourd WENE

L e a o LEDe s H
N pitode(L£D, 2y i WA =
BER Jell
t43F 10012 EF -————+ 110%
PS
Wl 3 el
E1E #1E 1BEF B Px@E
Toutton was not pressed! !
button was not pressed! 11
B button was. pressed! 11111
221 BAH HBHE & X (&) -—————+ 110%

955 |
3/5/2018 ||

ZH L e

image29.png
LED

image30.png
1F4& (+)

Anaode

ik (-)
Cathode

image32.png
[Fie o Skecn Took Help

Binks

Blsae

/* B/ 2 RIRTR A RIOHEE -
FEEHT

Turns on an LED on fox cne second, then off for one secend, repeatedly.
Host Ardutnos have an on-bosrd LED you can concrol. On the Uno and
Leonacdo, it 15 attached o digital pin 13. Tf you're unsure shat

pin the on-board LED 15 comected co on your Arduino model, check

e docunentacion st hecp://arduino.cc

Tass exsaple code 13 n the public donsin

moditiea 8 ney 2014

by Scote Fiezgerald
o

Setup(): —EEEHTIRHEE
EERE ISR LI

/] RERERS - IR EHNIT
[= e v)/

athe LED ofe by naking the volcage LoV
17 waic tor

loop(): —{AEFEERNITHY
B - EEREERAL

image34.png
FTA BT ETR
RIAE{R 2

REEE (void BIEHL)

HBETE

REEA() EIFREA

void setup() {
pinMode(13, OUTPUT);

}
void loop() {

digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

REFETAMIERRL " o

&, fla=a+b;

// turn the LED on
// wait for a second
// turn the LED off

// wait for a second

=
7T

image35.png
220ERIBHYEFE

image39.png
220ERIBHYEFE

image36.jpeg
PEE NI EEEEEEEEEREEREENERO
AXE XN A EERENEEEEEEERERRT
XN N NN AR RN R EEEEEEEEEO
AN N R N XN AR R NN EEEEEEEEEQ

I XA R X E AR EAREREEER REN RO

o

o

©a

mm

@B RN BE AN ANTAEREEIQ

TR
wm oo
aaome

@1

u

=18
"1
=2
=21
2
=23
=2
=25
=%
=2

= =2
- =5
i

emen mmmam smsEs smamas Tt
cmmmn mmEas

s

image37.png
ez K e . .
o EsE BrES B
. e]] 8 | = I
T Hzene- wzas L 5T Gymmes - WE

1.4.1 led flash | Arduino 185

(LedPin, OUTPUT);

(LedPin, HIGH);
(1000);

(LedPin, LOW;
(1000

5 ArduinafGenuing Uno on COMA

F19H H42H 10076 BF FL (EE)) B -———H——+ 160%

- w018 |

B ympos
-

ZH .

image41.png
ez K e . .
o EsE BrES B
. e]] 8 | = I
T Hzene- wzas L 5T Gymmes - WE

1.4.1 led flash | Arduino 185

(LedPin, OUTPUT);

(LedPin, HIGH);
(1000);

(LedPin, LOW;
(1000

5 ArduinafGenuing Uno on COMA

F19H H42H 10076 BF FL (EE)) B -———H——+ 160%

- w018 |

B ympos
-

ZH .

image38.png

image44.png

image40.png
1.4 _traffic_light

HIGH);

Low;
HIGH);

Low;
HIGH);

Low;

1 int ledPinR = 13;

2 int ledpinY = 12;

3 int ledpin G = 11;

a

SEvoid setup() {

6 pinvode(ledPinR, OUTPUT);
7 pinvode(ledPin Y, OUTPUT);
& pinvode(ledPin G, OUTPUT);
9}

10

11Bvoid loopO) {

12 digitaliivite(ledPin R,

13 delay(1000);

14 digitalirite(ledPin R,

15 digitalirite(ledPin Y,

16 delay(1000);

17 digitaliriteCledPin Y,

18 digitalirite(ledPin G,

19 delay(1000);

20 digitalirite(ledPin G,

21 delay(1000);|

2}

1_4_traffic_light | Arduino 1.8.5

//E L L edPin REEH13
//EREMedPin YAEH1Z
//EREMedPin_ GAHENIL

// EledPin_REHIAOUTPUT
// ELedPin_YEH{IAOUTPUT
// EledPin_GEIAOUTPUT

// ledPin REEANTGH
/7 G

// EledPin REEHLON
7/ EledPin_YHEANTGH

// ledPin YBEALON
7/ ledPin_GHEANTGH

// ledPin YSEALON

image45.png
1.4 _traffic_light

HIGH);

Low;
HIGH);

Low;
HIGH);

Low;

1 int ledPinR = 13;

2 int ledpinY = 12;

3 int ledpin G = 11;

a

SEvoid setup() {

6 pinvode(ledPinR, OUTPUT);
7 pinvode(ledPin Y, OUTPUT);
& pinvode(ledPin G, OUTPUT);
9}

10

11Bvoid loopO) {

12 digitaliivite(ledPin R,

13 delay(1000);

14 digitalirite(ledPin R,

15 digitalirite(ledPin Y,

16 delay(1000);

17 digitaliriteCledPin Y,

18 digitalirite(ledPin G,

19 delay(1000);

20 digitalirite(ledPin G,

21 delay(1000);|

2}

1_4_traffic_light | Arduino 1.8.5

//E L L edPin REEH13
//EREMedPin YAEH1Z
//EREMedPin_ GAHENIL

// EledPin_REHIAOUTPUT
// ELedPin_YEH{IAOUTPUT
// EledPin_GEIAOUTPUT

// ledPin REEANTGH
/7 G

// EledPin REEHLON
7/ EledPin_YHEANTGH

// ledPin YBEALON
7/ ledPin_GHEANTGH

// ledPin YSEALON

image46.png
1.4 _traffic_light

HIGH);

Low;
HIGH);

Low;
HIGH);

Low;

1 int ledPinR = 13;

2 int ledpinY = 12;

3 int ledpin G = 11;

a

SEvoid setup() {

6 pinvode(ledPinR, OUTPUT);
7 pinvode(ledPin Y, OUTPUT);
& pinvode(ledPin G, OUTPUT);
9}

10

11Bvoid loopO) {

12 digitaliivite(ledPin R,

13 delay(1000);

14 digitalirite(ledPin R,

15 digitalirite(ledPin Y,

16 delay(1000);

17 digitaliriteCledPin Y,

18 digitalirite(ledPin G,

19 delay(1000);

20 digitalirite(ledPin G,

21 delay(1000);|

2}

1_4_traffic_light | Arduino 1.8.5

//E L L edPin REEH13
//EREMedPin YAEH1Z
//EREMedPin_ GAHENIL

// EledPin_REHIAOUTPUT
// ELedPin_YEH{IAOUTPUT
// EledPin_GEIAOUTPUT

// ledPin REEANTGH
/7 G

// EledPin REEHLON
7/ EledPin_YHEANTGH

// ledPin YBEALON
7/ ledPin_GHEANTGH

// ledPin YSEALON

image41.jpeg

image42.png
A (Frequency) 22 EEFNIEE - HRBE2
—IEKE - MU EERSHAZARENEER -8
B - RS ; BT - ARWE -

[Edi5] 1) o Millsscond Duraton

[
mit
S

|E|I1}
i
g?—f
I
it
(3
e

image43.png
TBUC #Y
YL 8O
00962 824

08892 #20
SUMT 81D

Lvs8) 89y
195 #39
0087} #54

SYPZL #90
L3804} #90

£LT06 oY
15028 #69
666 #54

57729 #50
LEVSS #50

91957 9y
0TSIv #70
©669C #7d

THIE 270
8VLLZ #D

80TEZ oLy
SYLE €20
00584 #2d

95SH #20
6532H #2D

PS9LL #Y
THC0 29
66776 824

wruna
96769 20

0z3s By
TS 18O
EVZSY #4d

1688C #10
BYSVE £1D

STHEZ 0¥

09847 820
Visse 8
oozse o
osaE L9
8T6Z L4
e 3
£ErEz L0
02602 20
S6L6) 98
0094 oY
8%} 99
69608 94
S 93
Lvivs sa
S3P04 90
86 58
00088 SY
66°T8L SO
97869 S
52859 §3
€285 50
§2T26 52
88T6Y ¥8
000N ¥
0°%E ¥O
TTOYE 74
9628 13
99762 vO
€919 ¥O
6992 £8
00022 ¥
0%} 9
(L) 7T =)
189 €3
£89%) £0
480¢H €2
wez e
00084 2¥
6616 79
107 2]
0vze 23
9veL za
S0VS9 20
seris 18
[
66687 1O
PSSP b
0TI 13
80292 10
£0£2¢ 1D
89902 08

s w

3P

image47.png
©.O)

X - '
Rxmm Arduing

“eees seees seses seees sesee seeee seese seess sesse B

fritzing

image48.png
2 int notes_length
3 char notes[]
4@int beats[]
51,1,222221,1,2224;
6 int tempo = 300;

7

8 //AEMplayTone

idedgf ddedagddDbgfeCCbgag"”

9Evoid playTone(int frequency, int duration){

10 tone(buzzerPin, frequency);
11 delayCduration);

12 noTone(buzzerPin);

13}

1

15 //mEEHplayNote

16EV0id playNote(char note, int duration){

17 char names[] = {'c’, 'd", 'e’, 'f', 'g’, ‘a’,
15 int freq[] = {261, 294, 329, 370, 392, 440, 493, 523, 587};

198 for(int 1 = 0; i < notes_length; i+){
208 if (names[i] = note){

2 playTone(freq[i], duration);

22 ¥

3}

%}

x5

26EV0id setup() {

27 pinvodeCbuzzerPin, OUTPUT);

28 }

29

30Ev0id loop() {

318 for(int 1 = 0; i < notes_length; i++){

328 ifCnotes[i] — ' {

33 delay((beats[i] * tempo));

34 }

358 elsef

36 playNote(notes[i], beats[i] * tempo);
37 ¥

38 delayCtempo/2);

39}

40 delay(1000);
41 3

{1,1,2,2,2,4,1,1,222,4,

// EELHbuzzerPinAERIL

// EELMinotes_lengthAEH2S

7/ EEP S Inotes [MTFEMANER
// EEEHEIbeats |UEEHEANES

//E R tenpoA BR300 AN EMNEE

// fEbuzzerPinfIIE AT A requency (H2IVEM -

Va3
-

7/ EEP S Inanes AT EHNER
// EEEHIESIfreq M EHNAE

7/ EFbuzzerPinfIA0UTPUT

image51.png
2 int notes_length
3 char notes[]
4@int beats[]
51,1,222221,1,2224;
6 int tempo = 300;

7

8 //AEMplayTone

idedgf ddedagddDbgfeCCbgag"”

9Evoid playTone(int frequency, int duration){

10 tone(buzzerPin, frequency);
11 delayCduration);

12 noTone(buzzerPin);

13}

1

15 //mEEHplayNote

16EV0id playNote(char note, int duration){

17 char names[] = {'c’, 'd", 'e’, 'f', 'g’, ‘a’,
15 int freq[] = {261, 294, 329, 370, 392, 440, 493, 523, 587};

198 for(int 1 = 0; i < notes_length; i+){
208 if (names[i] = note){

2 playTone(freq[i], duration);

22 ¥

3}

%}

x5

26EV0id setup() {

27 pinvodeCbuzzerPin, OUTPUT);

28 }

29

30Ev0id loop() {

318 for(int 1 = 0; i < notes_length; i++){

328 ifCnotes[i] — ' {

33 delay((beats[i] * tempo));

34 }

358 elsef

36 playNote(notes[i], beats[i] * tempo);
37 ¥

38 delayCtempo/2);

39}

40 delay(1000);
41 3

{1,1,2,2,2,4,1,1,222,4,

// EELHbuzzerPinAERIL

// EELMinotes_lengthAEH2S

7/ EEP S Inotes [MTFEMANER
// EEEHEIbeats |UEEHEANES

//E R tenpoA BR300 AN EMNEE

// fEbuzzerPinfIIE AT A requency (H2IVEM -

Va3
-

7/ EEP S Inanes AT EHNER
// EEEHIESIfreq M EHNAE

7/ EFbuzzerPinfIA0UTPUT

image49.png

image50.png

image52.png

image53.png
Laasn
H-Bridge

“aaa saaas sssae assas aasss ssses ssess Basas sees
[g it LLill LLlal Liii. 4hdas ceees s assas aees

fritzing

image54.png
ENA IN1 IN2 IN3 INA ENB

image55.png
Y Motorn
Const int motorENA -

1
2

3 const int motorINL
4 const int motorIN2 -
5

6

7

8

/Motors
const int motorENB
const int motorIN3

9 const int motorINA

5;
7
6

11Bvoid setupO{

12 pinMode(motorENA, OUTPUT).
13 pintode(motorIN1, OUTPUT).
14 pinode(motorINZ, OUTPUT).
15 pinMode(motorENB, OUTPUT).
16 pinode(motorIN3, OUTPUT).
17 pinode(motorING, OUTPUT).
18 3

19

20Ev0id LoopO){

21 motorforward();

22| delay(2000);

23 motorBackward();

2 delay(2000);

25 motorStop();

26 delay(1000);

27}

2

29Evoid motorstop(){

30 digitalliri te(motorENA, HIGH)
31 digitallirite(motorINL, LON)
32 digitallirite(motorIN2, LOW)
33 digitalliri te(motorENB, HIGH)
34 digitallirite(motorIN3, LON)
35 digitallirite(motorINa, LON)
36 3

37

38Evoid motorFormard(){

39 digitalliri te(motorENA, HIGH)
40 digitallirite(notorINL, HIGH).
41 digitallirite(motorIN2, LOW)
42 digitallirite(notorENB, HIGH).
43 digitallirite(notorIN, HIGH).
44 digitallirite(notorINd, LOW)
45 3

4

47Evoid motorBacknard(){

48 digitallirite(notorENA, HIGH).
49 digitallirite(motorINL, LOW)
50 digitallirite(motorIN2, HIGH)
51 digitalliri te(motorENB, HIGH)
52 digitalliri te(motorIN3, LOW)
53 digitalliri te(motorINa, HIGH)
54}

image56.png

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image1.png

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image65.jpeg

image66.png
2

£

7

»

a

£ RBE

10088 {8

- detector| Arduino 185

File

Edit_Sketch Tools Help

YIP, Wai-yu Al ~

1

38

_7_lie_detector §

const int red_led_pin =
const int green_led_pin
const int blue_led_pin
const int buzzer_pin = 7;
const int offset_pin = 15;
const int sensor_pin = 14;
int band =

10;
11;

void setupO {
pintiode(red_led_pin, OUTPUT);
pintlode(green_led_pin, OUTPUT);
pintiode(blue_led_pin, OUTPUT);
pintlode(buzzer_pin, OUTPUT);
pinbode(offset_pin, INPUT);
pintlode(sensor_pin, TNPUT);
Serial.begin(9600);

void loopO £
int offset = analogRead(offset_pin);
int value = analogRead(sensor_pin);
if (value > offset - band){
digitallivite(red_led_pin, HIGH);
buzzer();
Serial.println(’Lie test fail

¥

else if (value < offset - band){
digitallivi te(blue_Led_pin, HIGH);
Serial.println("Lie detector ready");

¥

elsef

digitaliirite(green_led_pin, HIGH);

Serial.println’Lie test pass.

void buzzerOf
ForCint 1 = 0; 1 < 1000; i+){
digitaliivi teCbuzzer_pin, HIGH);
delayMicroseconds(100);
digitaliiri teCbuzzer_pin, LOW;
delayMicroseconds(100);

e -
AaB AaBl aaBbC - o
Iy mm@-
B fE ~
ST ETE TR T =

-——————+ 120%

image69.png
2

£

7

»

a

£ RBE

10088 {8

- detector| Arduino 185

File

Edit_Sketch Tools Help

YIP, Wai-yu Al ~

1

38

_7_lie_detector §

const int red_led_pin =
const int green_led_pin
const int blue_led_pin
const int buzzer_pin = 7;
const int offset_pin = 15;
const int sensor_pin = 14;
int band =

10;
11;

void setupO {
pintiode(red_led_pin, OUTPUT);
pintlode(green_led_pin, OUTPUT);
pintiode(blue_led_pin, OUTPUT);
pintlode(buzzer_pin, OUTPUT);
pinbode(offset_pin, INPUT);
pintlode(sensor_pin, TNPUT);
Serial.begin(9600);

void loopO £
int offset = analogRead(offset_pin);
int value = analogRead(sensor_pin);
if (value > offset - band){
digitallivite(red_led_pin, HIGH);
buzzer();
Serial.println(’Lie test fail

¥

else if (value < offset - band){
digitallivi te(blue_Led_pin, HIGH);
Serial.println("Lie detector ready");

¥

elsef

digitaliirite(green_led_pin, HIGH);

Serial.println’Lie test pass.

void buzzerOf
ForCint 1 = 0; 1 < 1000; i+){
digitaliivi teCbuzzer_pin, HIGH);
delayMicroseconds(100);
digitaliiri teCbuzzer_pin, LOW;
delayMicroseconds(100);

e -
AaB AaBl aaBbC - o
Iy mm@-
B fE ~
ST ETE TR T =

-——————+ 120%

image2.png

