
Junior Secondary
Robotics Learning and Teaching Resources
Basic Unit 2: Input and output of robots
Technology Education Section
Curriculum Development Institute
Education Bureau
The Government of the HKSAR
May 2019

All comments and suggestions related to the resource materials may be sent to:
Chief Curriculum Development Officer (Technology Education)
Technology Education Section
Curriculum Development Institute
Education Bureau
Room W101, West Block, 19 Suffolk Road
Kowloon Tong
Hong Kong

The copyright of the materials in this package, other than those listed in the Acknowledgments section and the photographs mentioned there, belongs to the Education Bureau of the Government of the Hong Kong Special Administrative Region.
Schools and educational organisations are welcome to use the content of this package for non-profit making educational purposes. In all cases, proper acknowledgements should be made.
Otherwise, all rights are reserved, and no part of these materials may be used for publication or other purposes in any form without the prior permission of the Education Bureau.
© Copyright 2019

[bookmark: _Hlk527034838][bookmark: _GoBack]
The learning resources is developed by the Robot Institute of Hong Kong.

Content
	Chapter 1: Input Components of Robots
	P.3

	Chapter 2: Ultrasonic sensor and temperature and humidity sensor
	P.8

	Chapter 3: Output Components of Robots
	P.15

	Chapter 4: Servo Motor
	P.20

	Chapter 5: Unit Project – Robot Cleaner
	P.25

	
	

	
	

 Input and Output of RobotsBasic Unit 2

Chapter 1: Input Components of Robots

Basic Unit 2: Input and output of robots			0

Basic Unit 2: Input and output of robots			20

Input
A robot is made up of many different function units, such as input, output, control, memory and computational logic. A computer is a machine that can be used to receive data (input), process it into useful information (output), and store it somewhere.

Digital signals and analogue signals
An input device is an electronic component that is capable of generating a current signal to the microcontroller. Current signals are generally classified into digital signals and analogue signals. A digital signal has only a variation between the maximum value and the minimum value, and the time of change is extremely short. A digital signal can be understood as a fixed signal. For example, if the voltage is 5 volts, a section of the digital signal will be like this:

Digital signal

[image: /Users/Andy/Desktop/dg.png]

On the contrary, an analogue signal can be understood as a floating signal. When the voltage is also 5 volts, the value of the signal varies between 0 and 5 volts, and the time of change varies. A section of the analogue signal will be like this:

[image: /Users/Andy/Desktop/ag.png]Analogue signal

A list of commonly-used sensors:
	[image:]
	Ultrasonic sensor
Detect the distance
	[image:]
	Pressure sensor
Detect the pressure borne by the plastic film

	[image:]
	Infrared sensor
Detect the colour
	[image:]
	pH sensor
Detect the pH value

	[image:]
	Gyroscope
Detect and maintain the orientation
	[image:]
	Sound sensor
Detect the change of sound volume

	[image:]
	Gas sensor
Detect a certain type of gas
	[image:]
	Magnetic field sensor
Detect the change of magnetic field

	[image:]
	UV sensor
Detect the ultraviolet radiation
	[image:]
	Water sensor
Detect the presence of water and water pressure

	[image:]
	Temperature and humidity sensor
Detect the temperature and humidity
	[image:]
	Oxygen sensor
Detect the oxygen content

	[image:]
	Light sensor
Detect the light intensity
	[image:]
	Digital pressure sensor
Detect the pressure

	

The above list shows the sensors that are commonly used when making robots. Except for the switch, all the rest are analogue signal input devices. For a switch or a button, there are only two states: open and closed, so the possible signals are obvious. In regard to the voltage, there are only 0 volt and 5 volts, and thus it is a type of digital input device. For other sensors such as temperature and humidity sensors and pressure sensors, however, the voltage signals received are not limited to 0 volt and 5 volts, which can be 2.4 volts at one time and 3.8 volts at the next, i.e. there are not fixed states As a result, it is classified as a type of analogue input device.

Do it yourself – Button signal

Basic Unit 2: Input and output of robots			10

The first task of this teaching resource is very simple. We will connect a button switch to the Arduino control board and program the Arduino to detect whether the button switch is being pressed. The connection method shown below will cause the control board to detect a high potential signal (5V) when the button switch is not pressed and a low potential signal when the button switch is pressed. The figure below shows the way to connect the button switch.

[image:]10K ohm resistor

DuPont wires (jumpers) are used to make the connections in the above figure. The button switch and the resistor are all connected to the breadboard, and then connected to the Arduino UNO microcontroller. Note that we must add a pull-up resistor to the circuit. Otherwise, when the button switch is pressed, the 5V will be connected to the GND and a short circuit will be resulted, causing damages to the Arduino control board.
Once we complete the above connection task, we have finished the basic hardware setting. Then we can use a USB cable to connect the microcontroller board and the computer. After connecting to the computer, we can start the programming part.

The complete codes for the control button program. Refer to file 2_1_1_control_button.

[image: C:\Users\alviswyyip\Desktop\2_2_1.png]Read the pin and print the button action to the serial communication channel
Define the pin and open the serial communication channel
Define the variables

In general, this program is divided into three parts. In the first part, we need to define variable 'button' for the pin of the button switch, and also variable 'result' for storing the signal read from the button switch. In the second part, we configure the pin of the button switch as input and set the serial communication channel as open with a transmission rate of 9600. The serial communication channel can be opened with the button at the top right of the application. In the third part, we use function 'digitalRead()' to read the digital value of the button switch and store the value in variable 'result'. We use 'result' to carry out logical judgment: if 'result' is LOW (low potential), we print 'Button was pressed!!!!!!!' to the serial communication channel; otherwise we print 'Button was not pressed!!!!!!!'. When completed, upload the program to the Arduino UNO microcontroller for testing. You will see the following information printed to the serial communication channel if the testing is successful.
I.

[image:]

Do it yourself – Sensing light

In this section, students are expected to learn how to use a light sensor. We will employ a photoresistor to be the sensor. The characteristic of a photoresistor is that when a light is shone on it, its resistance will become lower; conversely, when no light is shone on it, its resistance will become higher. According to the connection shown in the figure below, when a light is shone on the photoresistor, its resistance will decrease and the value of digital input pin A0 will be close to GND, i.e. the value will be close to 0; when the environment is dark, the value of digital input pin A0 will become higher.

[image:]

It is reminded that a common resistor in parallel must be added to prevent an excessive current from generating due to the low resistance of the photoresistor when a strong light is shone on it, which will cause damage to the Arduino control board. Once we complete the above connection task, we have finished the basic hardware setting. Then we can use a USB cable to connect the microcontroller board and the computer. After connecting to the computer, we can start the programming part.

The complete program codes for controlling the photoresistor. Refer to file 2_1_2_control_photoresistor.
Define the variables
Set up the program
Read the value of the photoresistor constantly and print it to the serial communication channel

In general, the program is divided into three parts. In the first part, we need to define variable 'photoresistor' for the photoresistor, and also variable 'result' for storing the signal read from the photoresistor. In the second part, we configure the pin of the photoresistor as input and set the serial communication channel as open with a transmission rate of 9600. In the third part, we use function 'analogRead()' to read the value of the photoresistor and store the value in variable 'result'. We print the value of 'result' to the serial communication channel. When completed, upload the program to the Arduino UNO microcontroller for testing. You have completed this task if the testing is successful.

Review questions
Can you answer the following questions after completing this chapter?
1. What are digital signals and analogue signals?
2. Can you give some examples of digital signals and analogue signals?
3. Can you use Arduino IDE to display digital input signals?

Chapter 2: Ultrasonic sensor and temperature and humidity sensor
I. Understanding ultrasonic sensors
[image: US-015-Ultrasonic-Module-Distance-Measuring-Transducer-Sensor-DC-5V.jpg]
A 4-pin ultrasonic sensor

Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing, which is about 20,000 Hz for a normal adult. Sound waves with frequencies higher than 20,000 Hz are called ultrasound, which are sound that cannot be sensed by humans.
There are two sets of hardware in an ultrasonic sensor, one for transmitting ultrasound and the other for receiving ultrasound when the ultrasound is bounced back upon hitting an obstacle. The data collected is time. Given the speed of the ultrasound, we can calculate the corresponding distance from the time collected. In nature, there are many examples of animals utilising the principle of ultrasound, such as dolphins and bats. In general, the calculation formula is distance = duration × 0.034/2. The figure below shows the working principle of an ultrasonic sensor.

[image: 螢幕快照%202018-01-17%20下午2.29.15.png]

1. Understanding temperature and humidity sensors
[image: 螢幕快照%202018-01-17%20下午2.58.58.png]
The sensor we use in this chapter is DHT 11, which is capable of detecting both the temperature and relative humidity. The temperature and humidity sensor can convert the measured temperature and relative humidity into electrical signals. Each set of signals represents a specific temperature or relative humidity. Through analysing the signal output by the sensor, we can acquire the temperature and relative humidity of the environment.
Do it yourself – Ultrasonic sensor
In this task, we will try to measure the distance with an ultrasonic sensor and print the measured distance on the serial monitor window. The task is divided into two parts: connecting the Arduino and the ultrasonic sensor, and programming the Arduino to measure the distance.
	
1 Connecting the Arduino and the ultrasonic sensor
We connect the ultrasonic sensor US-015 and the Arduino as follows. The 4-pin ultrasonic sensor has a Trig pin and an Echo pin. When the values are abnormal, we can debug according to the readings of the pins.

[image: C:\Users\HonSai\AppData\Local\Microsoft\Windows\INetCache\Content.Word\HC-SR04_bb.png]

Only the Arduino UNO, a breadboard and the ultrasonic sensor US-015 are required in this task. The VCC pin of the ultrasonic sensor should be connected to the 5V power supply of the Arduino, and the GND pin should be connected to GND of the Arduino.The remaining two pins of the ultrasonic sensor are the 'Trig' pin and the 'Echo' pin. The 'Trig' pin is responsible for triggering the ultrasonic sensor and is connected to pin 9 of the Arduino. The 'Echo' pin is responsible for calculating the duration of time it takes to receive the reflection of the ultrasound after it was transmitted. The 'Echo' pin is connected to pin 10 of the Arduino.

2 Programming the Arduino to measure the distance
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete codes of the program for measuring the distance with the ultrasonic sensor. Refer to file 2_2_1_ultrasonic_sensor.

Define the variables
Define the pins for the ultrasonic sensor
Transmit ultrasound and calculate the distance

Do it yourself – Temperature and humidity sensor

An interesting sensor will be introduced in this part: the temperature and humidity sensor. The temperature and humidity sensor allows students to detect the relative humidity and temperature of the environment. Unlike the previous sensors, thanks to the Arduino developers being so active on the Internet, they have written function libraries for different sensors. By using a function library, students can extract the values of the temperature and humidity sensor readily. Both signal inputs are expected to be handled in this part. The following is the address for downloading the library.
https://github.com/adafruit/DHT-sensor-library/archive/master.zip

[image:]
Select Add .ZIP Library… and choose the .ZIP file downloaded above. The DHT library will be added to the Arduino IDE. Then, we can start writing the program.

1 Connecting the Arduino and the temperature and humidity sensor
We connect the temperature and humidity sensor DHT11 and the Arduino as follows.
[image:]

2 Programming the Arduino to measure the temperature and relative humidity
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.

The complete program codes for the measurement by the photoresistor and the temperature and humidity sensor. Refer to file 2_2_2_photoresis_temp_humi_sensor.

Include the DHT library, define the variables and define the DHT objects
Open the serial communication and define the modes of the pins
Repeat reading the value of the photoresistor, compare it with the value set, and make judgment
Pause for 1 second for easy reading of the data
Repeat reading the value of the temperature and humidity sensor, compare it with the value set, and make judgment

3 Program content explanation
1. Include the DHT library, define the variables and define the DHT objects
[image:]The first part involves including function library dht.h, which allows us to extract values from the temperature and humidity sensor using simple functions. Then, we define photoresistor_pin and dht11_pin. Such a defining method makes the program easier to understand and write. The next line creates an object called DHT, which will later be used to store the value of the temperature and humidity sensor for accessing. The two variables containing 'result' that follow are used to store the values received from the sensors during the operation of the program. The two variables containing 'threshold' refer to the critical points. If the measured results stored in the 'result' variables are greater than the critical points, the program will act accordingly.
2. Open the serial communication and define the modes of the pins
[image:]
In the second part, we connect the pin for the photoresistor and define the mode of it as input, and open the serial communication channel.
3. Repeat reading the value of the photoresistor, compare it with the value set, and make judgment
[image:]
In the repeated loop, the result of the photoresistor is stored in light_result. If the result is greater than the critical point, 'dark' will be printed; otherwise, 'bright' will be printed.

4. Repeat reading the value of the temperature and humidity sensor, compare it with the value set, and make judgment
[image:]
In the repeated loop, the result of the temperature and humidity sensor is stored in temp_result. If the result is greater than the critical point, 'hot' will be printed; otherwise, 'cold' will be printed.
5. Pause for 1 second for easy reading of the data
[image:]
We can open the serial monitor window to view the above results.

Review questions
Can you answer the following questions after completing this chapter?
1. What is an ultrasonic sensor?
2. What is a temperature and humidity sensor?
3. Can you use Arduino IDE to display the signal of an ultrasonic sensor?
4. Can you use Arduino IDE to display the signal of a temperature and humidity sensor?

Chapter 3: Output Components of Robots
1.
1. Output
A robot is made up of many different function units, such as input, output, control, memory and computational logic. A computer is a machine that can be used to receive data (input), process it into useful information (output), and store it elsewhere.
1. Digital output
An output device is an electronic component that can change its operation according to the computer signal set by the program. Computer output signals are generally categorised into digital output signals and analogue output signals. A digital output signal refers to a fixed electronic signal. If the voltage is 5 volts, a section of the digital output electronic signal will only have a maximum voltage value or a minimum voltage value, making the signal more obvious and easier to be controlled by programming. Imagine outputting a high potential for one second, then outputting a low potential for one second. We need only three functions to do that: 'digitalWrite (OUTPUT, HIGH)', 'digitalWrite (OUTPUT, LOW)' and 'delay(1000)'. With appropriate process control, complex digital output signals can be generated.
Analogue output and pulse width modulation
On the contrary, if we want to use analogue output signals, it cannot be achieved at this stage as a computer itself cannot generate analogue output signals. Our solution is to use a technology called pulse width modulation (PWM).

[image:]

This signal is a type of digital output that allows us to simulate an analogue signal on a computer. In short, it consists of two major parameters: the duty cycle and the frequency. The duty cycle refers to the ratio between the duration for generating a high potential and the period to complete a signal cycle; the frequency is the fastest time to complete a cycle. According to the above figure, the green lines represent high potentials (5 volts), and one duty cycle lasts from one green line to another. As the AnalogWrite() defined in the above figure can only range from 0 to 255, AnalogWrite(64) represents a duty cycle with 25% of it at high potential. With this alternation between high digital output and low digital output at a specific frequency, coupled with a custom duty cycle, the output can represent an analogue output signal with a fixed voltage on the computer.
Taking 2.5 volts as an example, we can use this technology to define a 5-volt signal with a 50% duty cycle. As 5 × 0.5 = 2.5, it will become 2.5V. In this way, we simulate an analogue signal. This technology has a wide range of use and is very useful for the LEDs, buzzers and motors mentioned in the previous unit. For example, we can use a PWM signal to rotate a motor by 90 degrees precisely, so that we can control a robot to carry out more accurate actions.
The following is a list of common output devices. In general, the output signals can only be digital but we can use PWM to simulate analogue output signals. Therefore, all output signals can actually be digital or analogue, with differences occurring only in the programming part.

	[image:]
	LED
	[image:]
	Stepper motor

	[image:]
	Buzzer
	[image:]
	Seven-segment LED

	[image:]
	DC motor
	[image:]
	Organic LED

	[image:]
	Servo motor
	[image:]
	Speaker

Do it yourself – LED dimmer
In this chapter, we will try to control an LED dimmer with the Arduino. An LED dimmer can control its brightness through the use of a photoresistor to detect the brightness of the ambient light. The brighter the ambient light, the darker the LED will become; the darker the ambient light, the brighter the LED will become. This task is divided into two parts: the circuit design and connection of the LED dimmer, and the programming of the Arduino to control the LED.

1 The circuit design and connection of the LED dimmer
We connect the LED, the resistor, the photoresistor and the Arduino as follows.

[image: C:\Users\HonSai\AppData\Local\Microsoft\Windows\INetCache\Content.Word\analog_led.png]

The way of connection in this task is simple. First, the red LED is connected to the Arduino in the same way as in the LED blink task. We first insert a red LED on the breadboard, then connect the anode of the LED to pin 3 of the Arduino, and connect the cathode to a resistor and then to GND of the Arduino. Note that pin 3 of the Arduino has a '~' symbol next to it, which means that pin 3 supports PWM signal output. The way for connecting the photoresistor is in accordance with the voltage divider rule. One end of the photoresistor is connected in series to a resistor and then to GND of the Arduino, while the other end of the photoresistor is connected to the 5V power supply of the Arduino. We need to use a wire to connect a position between the photoresistor and the resistor to pin A0 of the Arduino. When the ambient light becomes brighter, the resistance of the photoresistor will become smaller, causing the voltage at pin A0 to increase; when the ambient light becomes darker, the resistance of the photoresistor will become greater, causing the voltage at pin A0 to decrease. By determining the voltage value at pin A0, we can control the brightness of the LED through detecting the brightness of the ambient light.

2 Programming the Arduino to control the LED
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.
The complete program codes of the LED dimmer. Refer to file 2_3_analog_led.
Define the variables
Define the pins for the LED and the photoresistor
Change the brightness of the LED according to the ambient light intensity

1. Define the variables
[image:]
In the first part, we define variables 'led_pin' and 'photores_pin' as integers 3 and A0 respectively. These two variables represent the pins of the Arduino to which the LED and the photoresistor are connected. Then, we also define variables 'led_result' and 'photores_result', and set their default values as integer 0. These two variables represent the brightness of the LED and the detection value of the photoresistor respectively.
2. Define the pins for the LED and the photoresistor
[image:]
In the second part, we define the pins of the Arduino to which the LED and the photoresistor are connected. In the previous part, variables 'led_pin' and 'photores_pin' have been defined as integers 3 and A0 respectively. In this part, we use 'pinMode()' to configure pin 3 as an output pin and pin A0 as an input pin.

3. Change the brightness of the LED according to the ambient light intensity
[image:]
In this part, we use 'analogRead()' to read the analogue input signal of pin A0 and store the received value in variable 'photores_result'. The value range stored in 'photores_result', which is from 0 to 1023, is too large for controlling the LED, thus we use function 'map()' to reduce the range from 0 – 1023 to 0 – 255. As the ambient light intensity is inversely proportional to the brightness of the LED, it is reasonable to convert the range of 0 to 1023 to the range of 255 to 0. Finally, we use 'analogWrite()' to output the adjusted brightness to the LED, causing the brightness of the LED to change according to the ambient light intensity.

Review questions
Can you answer the following questions after completing this chapter?
1. What is a digital output?
2. What is PWM technology?

Chapter 4: Servo Motor
1. Understanding servo motors

Simply speaking, a servo motor is a DC motor plus a circuit that detects the angle of rotation of the motor and a set of gears to control the angular position. A servo motor is generally a little bit bigger than a DC motor and has three connection wires, namely the positive power supply, ground and data wire. The data wire provides a current to detect the angle. We can use PWM signal technology to control the servo motor to rotate a specific angle precisely. The figure below shows a servo motor.

[image: ervo motor的圖片搜尋結果]

The operation flow of the motor is as follows: when a current passes through the motor, it will feed back an angle reading. Based on the difference between the reading and the value we have programmed, adjust the voltage until the feedback angle matches the specified one.
[image: 螢幕快照%202018-01-18%20上午4.36.09.png]Motor driving circuit
Angle detection
circuit
1. Detect the angle
2. Feed back the angle signal
3. Adjust the current that drives the motor

Do it yourself – Servo motor control
In this chapter, students are expected to control the movement of a servo motor through the use of a button switch. In this task, when students press the button switch, the servo motor will start to run gradually and will wait for five seconds before it turns off. If students want to use the servo motor more easily, Arduino IDE has built-in function library <Servo.h> for students to use.
1 Connecting the Arduino, button switch and servo motor
We connect the Arduino, the button switch and the servo motor as follows.

[image:]

2 Programming the Arduino to control the servo motor
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.
The complete program codes to control the servo motor. Refer to file 2_4_control_servo_motor.

Include the Servo function library, and define the variables and the Servo object
Set the pins used by the servo motor and set the pin mode
Codes for detection
Self-configure the rotation functions

3 Program content explanation
1. In the first part, we include the function library, define the names of the variables and create the servo motor object.
[image:]
2. In the second part, we connect the created servo motor object to the pin of the servo motor and configure the angle of the servo motor as zero. The pin mode of the button switch is set as input pull-up resistor. Students should note that it is not necessary to add a resistor when connecting the circuit but INPUT_PULLUP must be selected as the pin mode in the program.
[image:]
3. In the third part, we keep detecting whether low voltage has happened at the pin of the button switch. If it does, the door will be triggered to open. Then, after five seconds, the motor will turn 180° anticlockwise. The action is then repeated.
[image:]

4. In the fourth part, we self-configure a function for turning the motor 180° clockwise and a function for turning the motor 180° anticlockwise. In order to make the servo motor rotate slowly, we need to add a delay() function each time the motor rotates in the program to reduce the rotation speed of the motor.
[image:]
Review questions
Can you answer the following questions after completing this chapter?
1. What is a servo motor?
2. How can you control the servo motor?

Chapter 5: Unit Project – Robot Cleaner

The image of cleanliness and tidiness is very important to a civilized society. However, cleaning work is in general tiring, boring and repetitive, and it does not seem that it must be carried out by humans. Therefore, we would like to try to solve this problem from the perspective of a robot.
Robotics covers a range of elements, including science, technology and engineering. When conducting the unit project, students need to apply knowledge of various disciplines. For example, firstly, you should start with scientific research, studying how to use science to find out various stains and the corresponding cleaning methods. Secondly, you should consider the design of the robot by using the electronic components learned in this unit. When the prototype is completed, testing should be carried out. Finally, you should improve your design based on the test results. Throughout the project, students are expected to acquire more knowledge on science and engineering. It is also hoped that students can improve their communication, problem solving and leadership skills through collaboration with the others.

	Stage / step of engineering design
	Relevant knowledge
	Investigation and design considerations
	Applying the relevant knowledge and investigation results on engineering design

	Define the problem (confirm the requirements and limitations)
	Understand the daily floor cleaning work at home, and provides its advantages and disadvantages, so as to suggest the feasibility of a robot cleaner
	
	Clearly set the design, requirements and limitations (see the example in data file 1)

	Research
	· Home cleaning methods
· Effect of using different fabrics on cleaning
· Common materials used for cleaning
· The route to clean the home, so that the robot will not hit the furniture
· What sensors can be used to allow the robot cleaner to get the job done
	
	Choose a handling method (if conducted in class, one or more options can be chosen, depending on the teaching objectives, lesson time and material restrictions)

	Design consideration
	Research data show that an ultrasonic sensor can sense furniture effectively
	Prediction:
An ultrasonic sensor can help the robot avoid obstacles
	Test the operation of the sensor and the robot with simple programs first

	Test the model
	· The effect of the installation position of the sensor on the effectiveness of the robot cleaner
· The effect of the placement position of the fabric on the cleaning effectiveness
	Put the ultrasonic sensor in different positions of the robot for testing and obtaining the results
	

	
	
	Fair test:
To find out how the installation position of the sensor affects the cleaning efficiency
· Independent variable: installation position
· Dependent variable: cleaning results
· Control variables: furniture position, motor position, speed, etc.
	

	Solve problems encountered during the design / production / testing processes
	
	The program must enable the robot to cover every corner of the home to clean the home
	Take these findings as the necessary procedures of this engineering design

	Analyse and evaluate test results and problems occurred
	Random results
	· Have the robot move along a random path and evaluate whether the design has achieved the stated goals
· However, the route that the robot takes cannot be predicted
	Based on the analysis and evaluation results, find out ways to improve the design

	Improve
	Instead of installing a single ultrasonic sensor, multiple sensors of different types can be installed to help the robot find the route
	Use computer vision and artificial intelligence to find and improve the route, so as to increase the coverage of the robot cleaner
	Explore together how a robot cleaner is made today with the current technology

In the task of this chapter, students will integrate the knowledge learned previously to make a robot cleaner with the use of an ultrasonic sensor, motors, a motor control module and the Arduino. The task is divided into three parts, including: making the body structure of the robot cleaner, preparing the circuit of the robot and writing the program of the robot.
The robot cleaner of this task will have a simple structure, so that every student can make the robot cleaner easily even if only common materials are used. The robot cleaner is mainly made of craft sticks to make the robot lighter and thus facilitate its movement. The movement of the robot is driven by two motors, which are controlled by a motor control module. The castor (universal wheel) in the front allows the robot to change direction more easily. The cleaning material of the robot cleaner is placed in front of the castor. When the robot moves, it will drive the cleaning material to clean the place where the robot passes. The output voltage and output current of the Arduino are only 5V and 40mA respectively. To drive the robot, we need to use an additional 9V battery to provide the robot with a voltage of about 9V, so that the robot will work.
When the robot cleaner operates, it will move randomly to clean the floor. When the ultrasonic sensor detects that there are obstacles less than 20cm in front, the robot will back up and move in a random manner to clean other places
1 Preparing the circuit of the robot
We connect the ultrasonic sensor, the motors, the motor control module, the 9V battery and the Arduino as follows. When completed, we will install the electronic components on the chassis of the robot cleaner.

[image: C:\Users\HonSai\AppData\Local\Microsoft\Windows\INetCache\Content.Word\cleaning_robot.png]

2 Making the body structure of the robot cleaner
Students can design and make their own outer casing for the robot cleaner, in which the Arduino board and other electronic components will be placed, based on their own ideas. The following is a reference for making the chassis of the robot cleaner:
Tools required: 13 craft sticks, hot melt glue, a castor, an ultrasonic sensor, DC motors, a motor control module, wheels, an Arduino board, wires, a battery case, a 9V battery, cleaning material and a covering.

	1. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-57-03.jpg]Get 8 craft sticks and put them together

	2. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-59.jpg]Put hot melt glue on a craft stick with a hot melt glue gun

	3. The craft stick covered with hot melt glue
[image:]
	4. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-53.jpg]Press it on the whole row of craft sticks to fix them

	5. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-40.jpg]Finally, add a craft stick diagonally for fixing

	6. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-38.jpg]Use hot melt glue to fix the castor on the craft sticks

	7. [image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-33.jpg]Add 2 craft sticks at the rear to increase the height

	8. Attach a yellow motor at the rear of the robot
[image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-30.jpg]

	9. Repeat the above action
[image: ../Downloads/Telegram%20Desktop/photo_2018-01-04_18-56-27.jpg]
	10. Apply hot melt glue to the craft sticks beside the motor on the left side of the robot
[image:]

	11. Apply hot melt glue to the craft sticks beside the motor on the right side of the robot
[image:]
	12. First cut up the plastic cover and apply hot melt glue
[image:]

	13. [image:]Finally, add a rear cover for the robot

	14. [image:]Make a hole at the centre of the aluminium can

	15. Secure the aluminium can with metal wires and allow it to rotate
[image:]
	16. Put cleaning tools such as dusting cloths on the aluminium can
[image:]

3 Writing the program of the robot
Open Arduino IDE and connect the Arduino to the computer. Select Arduino UNO as the development board in the Tools menu and check whether the Communications Port is connected to the Arduino already. After connecting the Arduino, we need to input the following program and upload it to the Arduino.
The complete program codes of the robot cleaner. Refer to file 2_5_cleaning_robot.

Control the movement of the robot
Define the variables
Define the pins for the ultrasonic sensor and the motor control module

Set the function of the rotation of the motors
Set the function of the ultrasonic sensor for transmitting ultrasound and calculating the distance
Check the program

設定超聲波感應器函數，發射超聲波和計算距離

4 Program content explanation
1.
2. [image:]Define the variables
In the first part, we define the variables for the pins of the Arduino to which the ultrasonic sensor and the motor control module are connected. Each of the variables contains an integer. The reason for using 'const int' to define the variables is to ensure that the contents of these variables do not change throughout the entire program. We also set the default values of 'LwheelSpeed' and 'RwheelSpeed' as integer 100, which represent the rotation speeds of the left motor and the right motor respectively. As for 'LwheelisForward' and 'RwheelisForward', the default values need to be set as 'true'. These two variables control the directions in which the left motor and the right motor rotate respectively. 'duration' is responsible for storing the time it takes for the ultrasound to return to the sensor after transmission, while 'distance' is responsible for storing the distance between the ultrasonic sensor and the object.
3.
4. Define the pins for the ultrasonic sensor and the motor control module

In this part, we first define all pins of the Arduino that connect the motor control module as output pins. We define the 'trigPin' of the ultrasonic sensor as an output pin as the Arduino will send signals to the sensor through this pin to trigger it. The 'echoPin' is defined as an input pin since the ultrasonic sensor needs to input signals to the Arduino for calculating the time between the ultrasound is transmitted and received. As we need the robot to move randomly, we use 'randomseed(analogRead(0))' to generate random numbers. 'Serial.begin(9600)' sets the serial port connection rate, allowing the Arduino to communicate with the computer and display the data on the serial monitor window.[image:]

5. Set the function of the rotation of the motors
[image:]

The third part of the program is a function for the rotation of the motor. When the main program calls this motor rotation function, the function will control the directions and speeds of the rotation of the left motor and the right motor according to the input. Note that to control the motor speed, we can use 'analogWrite()' to generate a PWM signal to either 'motorENA' pin or 'motorENB' pin.

6. Set the function of the ultrasonic sensor for transmitting ultrasound and calculating the distance
[image:]

The fourth part of the program is a function of the ultrasonic sensor. The function calculates the distance of the object through the ultrasonic sensor and then sends the distance value to the main function for analysis. In the function, the ultrasonic sensor is triggered by 'trigPin', and then 'echoPin' is used to measure the time between the ultrasound is transmitted by the sensor and bounced back to the sensor after hitting the object. The distance is then calculated. As the function needs to send data back to the main function, we use 'return distance' at the end of the function to return the data stored in variable 'distance'.

7. Control the movement of the robot
[image:]

The fifth part is the core of the entire program, and is the main function of the program. First, we use the motor rotation function to set the direction in which the robot moves. To make the robot move randomly, we use 'random()' to change the values of variables 'LwheelSpeed' and 'RwheelSpeed' so that the left motor and the right motor rotate at different speeds. Then, we use the ultrasonic sensor to measure the distance. If the ultrasonic sensor measures a distance of less than 20cm, the robot will back up and clean other places.

8. Check the program
[image:]
The sixth part is for checking the program. We print the rotation directions and speeds of the left motor and the right motor on the serial monitor window to check if there are any accidents or unexpected problems occurred during the running of the program.

9. After completing the program, we can insert the battery for the robot cleaner. The robot will move around the floor and clean the floor along its way.
image4.png

image5.png

image6.tiff

image7.tiff

image8.tiff

image9.tiff

image10.tiff

image11.tiff

image12.tiff

image13.tiff

image14.tiff

image15.tiff

image16.tiff

image17.tiff

image18.tiff

image19.tiff

image20.png

image21.png

image22.png

image23.png

image24.png

image26.png

image25.jpeg

image27.png

image28.png

image29.png

image30.png

image32.png

image31.png

image33.png

image34.png

image36.png

image35.png

image36.tiff

image37.tiff

image38.tiff

image39.tiff

image40.tiff

image41.tiff

image42.tiff

image43.tiff

image44.png

image45.png

image48.png

image46.jpeg

image47.png

image49.png

image50.png

image53.png

image51.png

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image1.png

image62.jpeg

image63.jpeg

image64.jpeg

image65.jpeg

image66.jpeg

image67.jpeg

image68.png

image72.png

image69.png

image74.png

image2.png

image70.jpeg

image71.jpeg

image3.png

