機械原理 (Mechanisms)

機械的作用就是把動力轉換,它可以用來把一種輸入動力轉換爲另一種輸出動力,藉此以配合不同的設計需要。

機械動力可分為四類: 1. 旋轉運動(Rotary Motion) 就是圈圈轉的運動軌跡。 例如:摩天輪	
2. 直線運動(Linear Motion) 就是直線的運動軌跡 (註:改變方向前會稍爲停頓)。 例如:升降機	
3. 往復運動(Reciprocating Motion) 就是直線而前 後重復的運動軌跡。 例如:海盜船	
4. 搖擺運動(Oscillating Motion) 就是曲線而前 後重復的運動軌跡。 例如: 衣車	

動力的傳送及轉換

- 動力的傳送是將動力由機器的一部份傳送至機器的另一部份。
- 動力的轉換不單只可改換動力的種類,更可改變其推動力及速度。

連桿(Linkage)

連桿是由一組的槓桿去將輸入動力轉換爲特定的動力。

反向運動連桿

- 將輸入動力轉換成相反方向的輸出動力。
- 輸出動力的大小可隨樞軸的位置而改變。
- 有中央樞軸及偏心樞軸。

機械原理 (Mechanisms)

機械的作用就是把動力轉換,它可以用來把一種輸入動力轉換爲另一種輸出動力,藉此以配合不同的設計需要。

機械動力 可分爲四類: 2. 旋轉運動(Rotary Motion) 就是()的運動	
軌跡。 例如:	
5. 直線運動(Linear Motion) 就是()的運動軌跡 (註: 改變方向前會稍爲停頓)。例如:	
6. 往復運動(Reciprocating Motion) 就是()而 前後重復的運動軌跡。 例如:	
7. 搖擺運動(Oscillating Motion) 就是()而 前後重復的運動軌跡。 例如:	

動力的傳送及轉換

- 動力的傳送是將()由機器的 一部份傳送至機器的另一部份。
- 動力的轉換不單只可改換動力的種類,更可改變其推動力及()。

連桿(Linkage)

連桿是由一組的槓桿去將輸入動力 轉換爲特定的動力。

反向運動連桿

- 將輸入動力轉換成()方向的 輸出動力。
- 輸出動力的大小可隨樞軸的() 而改變。
- 有中央樞軸及偏心樞軸。