

示例四:

函数的不同表示方法:

表列、符号和图像(一)

目标: 1. 探究数字规律

2. 联系初中数列「输入-处理-输出」的概念与应变量及独立变量的关系

3. 从函数的图像、表列和符号方面来进一步理解函数的基本概念

学习阶段 : 4

学习单位 : 函数及其图像

所需教材: 工作纸、可连接互联网的计算机

预备知识 : (1) 使用代数符号代表数字

(2) 理解代数语言并懂得代入法

(3) 在直角坐标平面上绘画函数的图像

(4) 理解函数的定义

教学内容 :

1. 教师与学生重温数列的概念,并派发工作纸,着学生完成问题 1。

- 2. 教师待学生完成后,说明数列的项数与项值之间的关系可透过数字机的运作方式来模拟,并藉此讲解「输入・处理・输出」的概念。由此,与学生重温函数的概念,并与学生讨论问题 1中的数列:
 - (a) 项值是否项数的函数?
 - (b) 该函数的代数式是甚么?
 - (c) 该函数的输入值有没有限制?
- 3. 教师由数列输入值的限制,带出一般高中常见函数都以实数为输入值的分别,并要求学生完成工作纸之问题 2(a)-(c)及问题 3(a)-(c)。教师与学生总结工作纸的答案。

- 4. 教师说明两个量(即问题 2 和问题 3 中的 x、y)的关系可透过 图像、表列和符号来表示。
 - (a) 表列只显示部分 x、y 的值;
 - (b) 图像表示方式则涵盖较多及连续的 x、y 值;
 - (c) 代数式更能全面表达 x、y 两个量的关系。 教师指出以 f(x)或 T(n)分别代表以 x 或 n 的输入值(自变量) 的函数等号记法。在总结工作纸第 1 题(d)部,教师可进一步解 释 n 为变量的概念及其在 T(3)、T(10) 及 T(99)的意义。
- 5. 教师着学生完成问题 2(d)及问题 3(c)及(d),以让学生进一步熟习函数的记法。对能力较佳的学生,教师可讨论 f(a),f(a+1)内函数的假变量的意义。

工作纸:函数的图像、表列和符号

问题:

- 1. 考虑数列 4,8,12,16,...。
 - (a) 试估计该数列第 5 项和第 6 项的可能项值。

第 5 项的项值 = _____

第 6 项的项值 = _____

(b) 在下表中写出该数列的第 5 项至第 10 项的可能项值。

项数	1	2	3	4	5	6	7	8	9	10
项值	4	8	12	16						

(c) 试以 n 代表「项数」,与组员一起找出一条包含 n 的代数式去表示该数列,并以 T(n)表示,即

$$T(n) =$$
_______,

利用此公式求:

第 3 项的项值 T(3) =______;

第 10 项的项值 T(10) =______;

第 99 项的项值 T(99) =_______。

- (d) 如果给出项数,可以决定它的项值吗?_________________
- (e) 数列的项值是否其项数的函数?_______

2. 以下是一台数字机。对于每个输入值 x,它都给出唯一一个输出值 y(换言之,对于两个相同的输入,它不会给出两个不同的输出)。

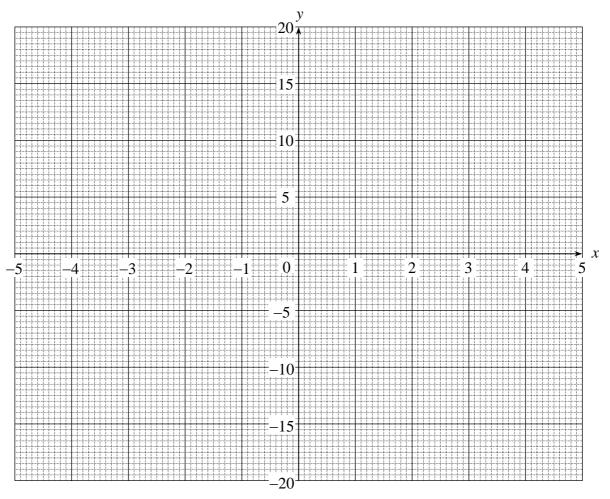
以下是该数字机的输入和输出纪录表:

输入值 x	- 5	- 4	0	1	3	4.2
输出值 y	- 15	- 12	0	3	9	12.6

(a) 与你的组员合作,猜测上述数字机的运作模式及以代数式表示有关的函数(即输入值和输出值的关系式,例如:y = 2x + 3)。

(b) 在(a)部中,我们凭若干个的输入值和输出值的组合,估计 出该数字机的一般运作模式。假设这个关系式正确,只要 给出任意一个输入值,便可以轻易地找出输出值。当输入 值是 1.5 时,输出值是:

(c)(i)试在以下的直角坐标平面上,利用所给的输入和输出纪录表,把(a)部中的关系式所对应图像绘画出来。



(ii)利用所得的图像,读出当输入值是 4.5 时对应的输出值。

(iii)对于任何一个输入值 x , 有多少个对应的输出值 y ?

(iv)输出值(y)是输入值(x)的函数吗?

(d) (i) 假设(a) 部中所得的关系式为 y = f(x),

则
$$f(x) =$$
 ________。

(ii)利用以上函数的记法,完成下表:

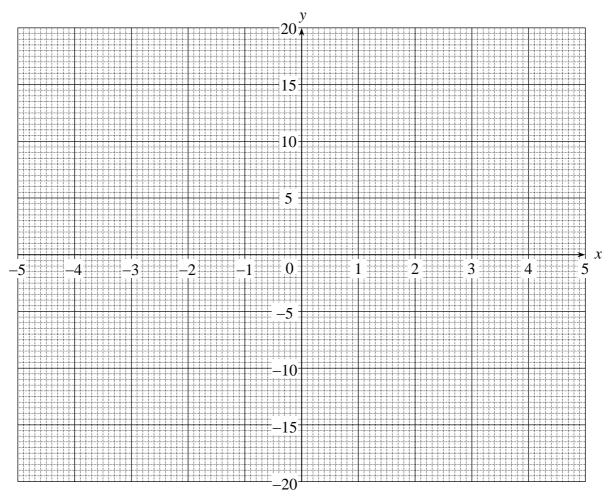
x		f(x)=	
-1000	f() =	_=
-0.5	f() =	_=
11	f() =	
73.4	f() =	
x	f() =	
а	f() =	=
<i>a</i> +1	f() =	

3. 以下是另一台数字机的输入和输出纪录表:

输入值 x	-4	-3	-2	-1	0	1	2	3	4
输出值 y	16	9	4	1	0	1	4	9	16

(a) 与你的组员合作,猜测上述数字机的运作模式及以代数式表示函数关系(即输入值和输出值的关系式,例如: y = 2x + 3)。

(b)(i)试在以下的直角坐标平面上,利用所给的输入和输出纪录表,把(a)部中的关系式所对应图像绘画出来。



(ii)对于任何一个输入值 x,有多少个对应的输出值 y?

(iii)由图像或表列值,输出值 y 是输入值 x 的函数吗?

$$(iv)$$
若 $y = g(x)$,则 $g(x) =$ ______。

(c) 按(b)的代数式,完成下表。

x		g(x) =	
-100	g() = =	
-2.3	g()==	
3.15	g()==	
1050	g()==	

教师注意事项:

- 1. 本示例活动约需时 60 分钟。
- 2. 部分学生在图像绘画方面可能遇上困难,教师在学生尝试工作纸 1 问题 2(c)时可稍加指引。
- 3. 部分学生对函数符号产生误解。例如:认为 $f(x) = f \cdot x$ 等。本示例由实在的例子开始逐步引入函数的记号,而并非直接定义符号f(x)。教师亦可透过工作纸 1 内 T(3)、T(10)等及工作纸 2 内 f(3)、f(11)等深化学生对 f(x)符号的意义。教师亦可利用示例六"容易混淆的函数概念"再深入与学生讨论一般函数 f,f(a+b)是否等于 f(a)+f(b)等问题。
- 4. 教师与学生讨论函数的表示方法,宜带出不同表示方法的局限性,如
 - (a) 表列只能显示不连续的变量的值。
 - (b) 图像则能涵盖更阔的数量值,但是却只局限图像所显 x、y 的区域内。出了区域外,便无从得知两个变量之间的关系。
 - (c) 符号较能全面表示函数的关系.然而由现实生活得出的数量 往往没有给出符号表示而须多种工具求其符号表示。
- 5. 工作纸建议答案如下:
 - 1. (a) 第 5 项的项值 = 20 第 6 项的项值 = 24

(b)

项数	1	2	3	4	5	6	7	8	9	10
项值	4	8	12	16	20	24	28	32	36	40

(c)
$$T(n) = 4n$$

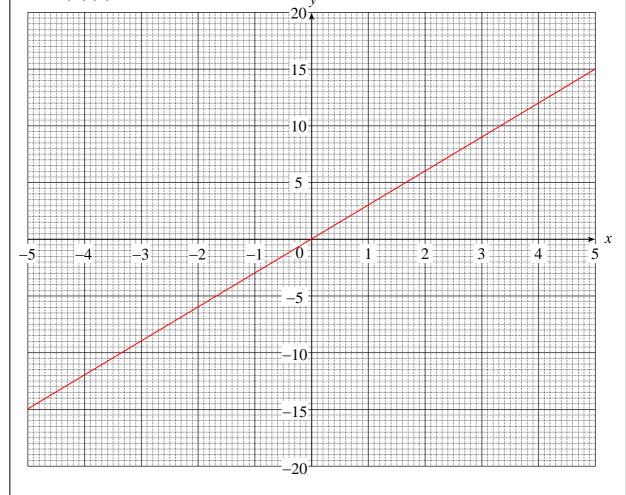
第 3 项的项值 T(3) = 12;

第 10 项的项值 T(10) = 40;

第 99 项的项值 T(99) = 396。

- (d) 可以。
- (e) 是。
- 2. (a) y = 3x
 - (b)输出值=3(1.5)=4.5

(c)(i)



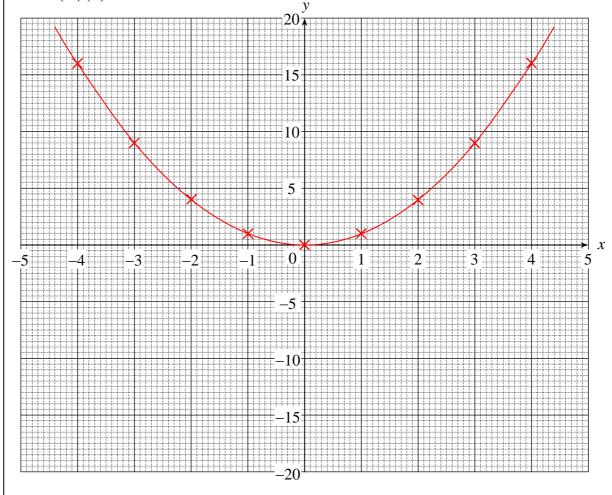
- (ii) 13.5_o
- $(iii) \uparrow_{\circ}$
- (iv)是。
- (d)(i) $f(x) = 3x_{o}$

(ii)

X	$f(x) = \frac{3x}{}$
-1000	$f(-1000) = 3 \times (-1000) = -3000$
-0.5	$f(-0.5) = 3 \times (-0.5) = -1.5$
11	$f(11) = 3 \times (11) = 33$
73.4	$f(73.4) = 3 \times (73.4) = 220.2$
х	$f(x) = 3 \times (x) = 3x$
а	$f(a) = 3 \times (a) = 3a$
a+1	$f(a+1) = 3 \times (a+1) = 3a+3$

3. (a)
$$y = x^2$$

(b)(i)



- (ii) **↑**。
- (iii)是。
- (iv)若 y = g(x) , 则 $g(x) = x^2$ 。

(c)

x	$g(x) = \frac{x^2}{}$
-100	$g(-100) = (-100)^2 = 10000$
-2.3	$g(-2.3) = (-2.3)^2 = 5.29$
3.15	$g(3.15) = (3.15)^2 = 9.9225$
1050	$g(1050) = (1050)^2 = 1\ 102\ 500$