S2 Mathematics

Trigonometry

Tong Sui Lun (Po Leung Kuk Mrs. Ma Kam Ming-Cheung Foon Sien College)

CMI school up to 2009-2010
 Students fear to use English

- Problems of direct instruction
 - Students find it difficult to develop concepts

Abstraction through nominalisation

 Making meaning in mathematics through: language, visuals & the symbolic

The Teaching Learning Cycle

Direct instruction

For a right-angled triangle with a given acute angle θ , the ratio of the opposite side of θ to the hypotenuse is a constant. We call this ratio the sine ratio of θ ...

Problems

Some students : $\sin \theta = 1/2$ $= 30^{\circ}$

$$\sin (\theta/2) = 1/3$$
$$\sin \theta = 1/3 * 2$$
$$\sin \theta = 2/3$$

... ...

Unpack the meaning of $\sin \Theta$

through

similar triangles.

Activity

- There are different types of right-angled triangles
- Measure the opposite side of a given angle and the hypotenuse
- Find the ratio of the opposite side of a given angle to the hypotenuse

Activity (Example – 30°)

	1	2	3	4
Hypotenuse (A)	AC	AE	AG	AI
Opposite side of $\boldsymbol{\Theta}$ (B)	BC	DE	FG	HI
Ratio of (B / A)				

Activity (Example – 45°)

	1	2	3	4
Hypotenuse (A)	AC	AE	AG	AI
Opposite side of $\boldsymbol{\Theta}$ (B)	BC	DE	FG	HI
Ratio of (B / A)				
				Ŧ
	Ç			┍┥∫┍

Findings from the table

- The ratio of the opposite side of *O* to the hypotenuse of a right angled triangle, which has the same acute angle (*O*), **is very close**.
- The values of the ratio of the opposite side of *O* to the hypotenuse from a different acute angle are different
- WHY ???? Is there any relationship ??

Mathematical concepts

Setting the

context

Students constructing independently

Assessing and developing control

Teacher modelling and deconstructing

Teacher and students constructing jointly

Developing mathematical concepts

Findings

For a right-angled triangle with a given acute angle \(\Omega\), the ratio of the opposite side of \(\Omega\) to the hypotenuse is a constant.

Express that constant mathematically

Abstraction through nominalisation

Examples

Find the value of θ in the following question. Q.1 - sin θ = 0.7 Q.2 - sin(θ /2) = 0.5

$Q.1 - \sin\theta = 0.7$

From the table , when the acute angle is 45° , the value of $sin 45^{\circ} \sim 0.7$

 $\sin \theta = 0.7$ $\sin \theta \approx \sin 45^{\circ}$ $\theta \approx 45^{\circ}$

45 [°]	1	2	3	4	
Hypotenuse (A)	9.3	11.1	13.3	16	
Opposite side of $\boldsymbol{\Theta}$ (B)	6.5	7.8	9.4	11.3	
Ratio of (B / A)	0.699	0.702	0.707	0.706	
hypotenuse opposite side of θ					

$Q.2 - \sin(\theta/2) = 0.5$

From the table , when the acute angle is 30° , the value of $\sin 30^{\circ} = 0.5$

. θ.	30 [°]	1	2	3	4
$sin(\frac{-}{2}) = 0.5$	Hypotenuse (A)	10.6	12.7	15.2	18.3
$\sin(\frac{\theta}{-}) \approx \sin 30^{\circ}$	Opposite side of <i>O</i> /2 (B)	5.3	6.4	7.6	9.1
2	Ratio of (B / A)	0.5	0.504	0.5	0.497
$\frac{(\theta)}{2} \approx 30^{\circ}$ $\theta \approx 60^{\circ}$	hypotenuse		opposite	e side of	f 0/2
	0/2				

Conclusion

Indentify and unpack the nominal groups
Experience the process of abstraction

- Make use of the three meaning-making systems in mathematics
- Scaffolding : The teaching learning cycle

Mathematical concepts

Setting the context

The process of working on **cos** Θ and **tan** Θ are similar process with **sin** Θ

Students constructing independently

Assessing and developing control

Teacher modelling and deconstructing

Construct sin *9* with students

Teacher and students constructing jointly

Developing mathematical concepts

Self Reflection

- More confidence to use the three meaning making systems in Mathematics
- Spend too much time on these activities?
 - Hands-on experience VS Direct Instruction
- Student centred Vs Teacher centred
- Teachers' understanding VS Students' understanding
 - Denaturalize ourselves starting from students
- Preparing is better than repairing

Thank you!