《數聞》第六期挑戰園地解答

1. 一個古戈爾有多少個正因數?(關於古戈爾的定義,請參看本期 Jacob Lurie 教授的訪問。)

解答:由於一個古戈爾是 $10^{100} = 2^{100} \times 5^{100}$,因此古戈爾的所有正因數均為 2 和 5 不同冪之積,當中 2 和 5 的冪分別有 101 個不同的選擇。因此,所求答案為 $101 \times 101 = 10201$ 。

2. 考慮一個 2015×2015的棋盤。現移除左上角那個 1×1的小格。問餘下部分可否以 1×4和 4×1的長方形無重疊地密鋪?

解答:對於所有x和y,在第x行第y列的小格填上複數 i^{x+2y} 。由此,任何一個 1×4 或 4×1 的長方形所覆蓋小格數值之和為零。但可以證明棋盤移除左上角小格後,所有小格數值之和非零,因此得證不可能如題無重疊地密鋪。

3. 求一個邊長為5、5、6的三角形的外接圓半徑。

解答:設該三角形為 ABC,且 BC 邊長為 6。設 D 為 BC 的中點。由畢氏定理, AD=4。考慮 ABC 的對稱性,其外心 O 位於直線 AD 之一。由於角 BAC 為銳角,O 位於三角形內。設 ABC 的外接圓半徑為 R。由於

$$OD^2 + BD^2 = OB^2$$
,可得 $(4-R)^2 + 3^2 = R^2$,因此 $R = \frac{25}{8}$ 。

4. 若 $x \cdot y \cdot z$ 為正實數,滿足xyz = x + y + z,求證:存在一個三角形ABC,使得 $x = \tan A \cdot y = \tan B \cdot z = \tan C$ 。

解答:由於 $x \cdot y \cdot z$ 為正數,因此有實數 $a \cdot b \cdot c$ 介乎 0 與 $\pi/2$ 之間,令 $x = \tan a \cdot y = \tan b$ 及 $z = \tan c$ 。由已知條件,可知

 $\tan c = \frac{\tan a + \tan b}{\tan a \tan b - 1} = -\tan(a+b) = \tan(-a-b)$,因此 $c = k\pi - a - b$,其中 k 為整數。由於 $0 < a, b, c < \pi/2$,可得 $c = \pi - a - b$ 。證畢。

得獎者名單:

學生姓名	學校名稱
賴俊延	聖文德書院
謝卓熙	香港培正中學
許晉瑋	仁愛堂田家炳小學
周永豪	荃灣官立中學
吳庭俊	宣道會陳瑞芝紀念中學

得獎者亦會另外獲電郵通知。