

示例六:

函數概念的常見迷思

目 標: 釐清學生對以下容易混淆的函數的概念:

(a) $f(0) \neq 0$

(b) $f(-a) \neq -f(a)$

(c) $f(ab) \neq a \cdot f(b)$

(d) $f(a+b) \neq f(a) + f(b)$

(e) $f(ab) \neq f(a) \cdot f(b)$

其中a及b為常數

學習階段:第四學習階段

學習單位:函數及其圖像

所需教材:工作紙

預備知識:懂得計算函數的值

教學內容:

- 1. 教 師 提 問 學 生 ,在 一 般 情 況 下 , f(5) = f(2) + f(3) 是 否 正 確 及 解 釋 他 們 的 理 解 。
 - (a) 設 f(x) = 2x 5, 分別計算 f(2+3)及 f(2) + f(3), 教師提問學生 f(2+3) = f(2) + f(3)是否正確。
 - (b) 教 師 從 而 再 提 問 學 生 ,對 於 任 意 函 數 f(x) 及 任 意 常 數 a 及 b ,以 下 數 式 是 否 一 定 正 確 : f(a+b) = f(a) + f(b)。
- 2. 教 師 提 問 學 生 等 式 f(-x) = -f(x)是 否 一 定 正 確 , 並 要 求 學 生 提 供 例 子 。
- 3. 教師分發工作紙 1,著學生自行探究有關函數概念,完成工作紙並與學生進行討論及作出以下總結:
 - (a) 對於任何函數 f(x)及常數 a 及 b,以下數式未必一定正確:

- (i) f(0) = 0
- (ii) f(-a) = -f(a)
- (iii) $f(ab) = a \cdot f(b)$
- (iv) $f(ab) = f(a) \cdot f(b)$
- (v) f(a+b) = f(a) + f(b)
- (b) 教師要強調,對於某些數值,上列等式有可能在某些函數成立,但並非所有函數等式都成立。例如:當 f(x) = 3x,f(-a) = -f(a),然而,一般而言 $f(-a) \neq -f(a)$,反例如 f(x) = x則 $f(-a) \neq -f(a)$ 。
- (c) 同樣地,若上列等式在某些數值成立,但並不代表所有數值等式都成立。例如,當f(x)=(x-8)(x-4), $f(2\times4)=f(2)\times f(4)=0$,但 $f(2\times3)\neq f(2)\times f(3)$,因此,一般而言, $f(ab)\neq f(a)\cdot f(b)$ 。還有,若學生已學三角函數,教師可討論若 $f(x)=\sin x$, $f(360^\circ+30^\circ)=f(360^\circ)+f(30^\circ)$,但 $f(300^\circ+30^\circ)\neq f(300^\circ)+f(30^\circ)$,因此,一般而言, $f(a+b)\neq f(a)+f(b)$ 。
- 4. 教師須提醒學生有關函數記法的意義並且他們不應將 f(x)看成 $f \cdot x$ 。同時,在一般數字運算常用的分配律亦不在函數上成立。換言之,一般函數, $f(a+b) \neq f(a) + f(b)$ 及 $f(a \cdot b) \neq f(a) \cdot f(b)$ 。
- 5. 教師著學生回家完成工作紙2,並給予適當指導。

工作紙1:函數概念的常見迷思

1. 試完成表中各函數的值:

	x = -3	x = -2	x = 0	x = 2	x = 3	<i>x</i> = 5	<i>x</i> = 6
$(i) f(x) = x^2$							
(ii) $f(x) = x^3$							
(iii) f(x) = x - 1							
(iv) f(x) = 2x							
$(v) f(x) = x^2 + 3$							

2.	(a) 從上表中,	根據 $f(x) = x^2$,	找出 f(2),	f(3)及 $f(5)$ 的值	,由此
	判 斷 $f(5) = f$	f(2) + f(3)是 否正	確。		

(b) a 及 b 為任意常數,參看表內不同的函數,你認為 f(a+b) = f(a) + f(b)是否一定正確。

- 3. 設 a 及 b 為任意常數。參考上表,試判別以下各項是否一定 正確;如不一定正確,請列舉例子。
 - (a) f(0) = 0

(b) f(-a) = -f(a)			
(c) $f(ab) = a \cdot f(b)$			
(c) $f(ab) = f(a) \cdot f(b)$			

工作紙 2:函數概念的常見迷思

f(x)及 g(x)為任意函數,而 a、b、m 及 n 為任意常數。

 在下列各題中,判別以下哪些是否一定正確,並在適當的空格 內加上√。如不一定正確,請舉出反例。

(a)	-f(2) = f(-2)	一 定 正 確 □	不 一 定 正 確 □	反 例
(b)	f(m) + f(n) = f(m+n)			
(c)	g(a+1) = g(a)+1			
(d)	a + f(b) = f(a+b)			
(e)	g(a) - g(b) = g(a - b)			
(f)	f(m+n) = f(n+m)			
(g)	f(a-1) = f(1-a)			
(h)	f(ab) = f(ba)			
(i)	$g(2a) = g(a) \times 2$			
(j)	g(5b) = 5g(b)			
(k)	$f(mn) = f(m) \times f(n)$			
(1)	$[f(a)]^2 = f(a) \cdot f(a)$			
(m)	$[f(a)]^2 = f(a^2)$			

2. 以下涉及函數的等式一定正確嗎?試列舉例子支持你的說法。

(a)
$$f(0) = 0$$

(b)
$$\frac{g(x)}{g(y)} = g\left(\frac{x}{y}\right)$$

(c)
$$f\left(\frac{1}{a}\right) = \frac{1}{f(a)}$$

(d)
$$f\left(\frac{1}{a}\right) = \frac{f(1)}{f(a)}$$

3.	試判	鰀 -	下列	語句	是 否	成立	. 並	加以	解釋。

((a)) 如	a	=	b	,	則	f(a) =	f((b)	۰

45 a		
如 $f(a) = f(b)$, 則 $a = b$ 。		

(b)

教師注意事項

- 1. 本示例活動約需時60分鐘。
- 2. 工作紙答案如下:

工作紙 1

1.

	x = -3	x = -2	x = 0	x = 2	x = 3	<i>x</i> = 5	<i>x</i> = 6
$(i) f(x) = x^2$	9	4	0	4	9	25	36
(ii) $f(x) = x^3$	-27	-8	0	8	27	125	216
(iii) f(x) = x - 1	-4	-3	-1	1	2	4	5
(iv) f(x) = 2x	-6	-4	0	4	6	10	12
$(v) f(x) = x^2 + 3$	12	7	3	7	12	28	39

- 2. (a)不一定正確。
 - (b)不一定正確。
- 3. (a)否。

例: 當
$$f(x) = x-1$$
 時,

因為
$$f(0) = -1$$

所以
$$f(0) \neq 0$$

(b)否。

例:當
$$f(x) = x^2$$
 時,

因為
$$f(-2) = 4$$

及
$$-f(2) = -4$$

所以
$$f(-2) \neq -f(2)$$

(c)否。

因為
$$f(2\times3) = f(6)$$

及
$$2 \times f(3) = 2 \times 2$$

$$= 4$$
 所以 $f(2 \times 3) \neq 2 \times f(3)$

(d)否。

例: 當
$$f(x) = 2x$$
 時,

因為
$$f(2\times3) = f(6)$$

$$=12$$

及
$$f(2) \cdot f(3) = 4 \times 6$$

$$= 24$$

所以
$$f(2\times3) \neq f(2)\cdot f(3)$$

工作紙 2

1.

正確

正 確

反 例

(a)
$$-f(2) = f(-2)$$

$$\overline{\mathbf{A}}$$

$$f(x) = x^2$$

(b)
$$f(m) + f(n) = f(m+n)$$

$$f(x) = x^2$$
, $m=3$, $n=4$

(c)
$$g(a+1) = g(a)+1$$

(d)
$$a+f(b)=f(a+b)$$

$$f(x) = 3x$$
, $a = 2$, $b = 3$

(e)
$$g(a) - g(b) = g(a - b)$$

(f)
$$f(m+n) = f(n+m)$$

$$\overline{\mathbf{V}}$$

(g)
$$f(a-1) = f(1-a)$$

(h)
$$f(ab) = f(ba)$$

$$\overline{\mathbf{V}}$$

(i)
$$g(2a) = g(a) \times 2$$

(j)
$$g(5b) = 5g(b)$$

(k)
$$f(mn) = f(m) \times f(n)$$

$$(1) \quad [f(a)]^2 = f(a) \cdot f(a)$$

$$\checkmark$$

(m)
$$[f(a)]^2 = f(a^2)$$

f(x) = 2x, a = 3

2. (a)否

例: 設
$$f(x) = 2x + 1$$

 $f(0) = 2(0) + 1$
 $= 1 \neq 0$

(若學生提出當 $f(x)=x^2$,則 f(0)=0,那時,教師必須提醒在特例中等式成立,但一般而言,如 f(x)=mx+c 或 $g(x)=ax^2+bx+c$ 等,其中 a、b、c 及 m 均為非零的值時,則 $f(0) \neq 0$ 。)

(b)否

例: 設
$$g(x) = 2x + 3$$
因為 $\frac{g(3)}{g(6)} = \frac{2 \times 3 + 3}{2 \times 6 + 3}$

$$= \frac{9}{15}$$

$$= \frac{3}{5}$$

$$\overline{ffi} \qquad g(\frac{3}{6}) = g(\frac{1}{2})$$
$$= 2 \times \frac{1}{2} + 3$$
$$= 4$$

所以
$$\frac{g(3)}{g(6)} \neq g(\frac{3}{6})$$

(同樣地 , 當學生提出 $g(x)=x^2$, 則 $\frac{g(3)}{g(6)}=g\left(\frac{3}{6}\right)$, 教師應指出在特例中等式成立,但一般而言,如 f(x)=mx+c 或 $g(x)=ax^2+bx+c$ 等,其中 a、b、c 及 m 均為非零的值時,則 $\frac{g(x)}{g(y)}\neq g\left(\frac{x}{y}\right)$ 。)

(c)否

因為
$$f\left(\frac{1}{3}\right) = 2 \times \frac{1}{3}$$
$$= \frac{2}{3}$$

所
$$\frac{1}{f(3)} = \frac{1}{2 \times 3}$$
$$= \frac{1}{6}$$
所以
$$f\left(\frac{1}{3}\right) \neq \frac{1}{f(3)}$$

(d)否

明顯地
$$f\left(\frac{1}{3}\right) \neq \frac{f(1)}{f(3)}$$

- 3. (a) 成立, 由函數的基本定義得知。
 - (b) 不一定成立,若 $f(x)=x^2$, f(3)=9, f(-3)=9,明顯地 f(3)=f(-3),但 $3\neq -3$ 。
- 3. 教師要特別強調,對於某些數值,上述函數等式可能成立,但 並非所有數值均可令等式成立。在問題中"一定正確"的意思 是指對所有函數在其定義域內的每一個值,等式都成立。
- 4. 教師可進一步與學生討論哪些類型的函數能滿足上述所提及的各等式,從而認識它們的特性,一般而言:
 - (a) 若 f(x) = ax、 $f(x) = ax^2$ 、 $f(x) = ax^3$ 等 等 (a 為 常 數), 則 f(0) = 0;
 - (b) 若 f(x) 為 奇 函 數 , 如 f(x) = ax、 $f(x) = ax^3$ 、 $f(x) = ax^5$ 等 等 (a 為 常 數) , 則 f(-b) = -f(b) ;

- (c) 若 f(x) = mx (m 為常數),則 $f(ab) = a \cdot f(b)$;
- (d) 若 f(x) = mx (m 為常數),則 f(a+b) = f(a) + f(b);
- (e) 若 f(x) = x、 $f(x) = x^2$ 、 $f(x) = x^3$ 等 等 , 則 $f(ab) = f(a) \cdot f(b)$ 。