NSS Enriching Knowledge for Information and Communication Technology Curriculum Series: (5) Latest Technologies on 'Internet Services & Applications' and 'Wireless Computer Network'

(CDI020071828)

28 Feb 2008

Introduction and Several Recent Advances of Wireless Communications

Prof. Jianwei Huang (jwhuang@ie.cuhk.edu.hk)

Acknowledgement

- Minghua Chen (CUHK)
- David Tse (UC-Berkeley)
- Jennifer Hou (UIUC)
- Raj Jain (WUSTL)

Kaustubh Phanse (LUTH)

Why Wireless?

Users want to get connected anywhere

• Reality (2006):

• USA: 12%

D

- Korea: **50%**
- Hong Kong: 25%

Service providers want easy/cheap provision

- No wire or infrastructure node
- Cheap: establishment cost (1/4 of cable),
- Easy installation, low operation cost, robust...

Usage Trend

North American Wireless Data Connections (Millions)

Technology Trend

Throughput

- Cellular: 14.4 kbps (modem) → 144 kbps (1xRTT) → 384kbps (EDGE) → 2Mbps (EV-DO) →? (WiMax) →...
- Wi-Fi: 2 Mbps (AT&T Wave) → 11 Mbps(802.11b) → 54
 Mbps (802.11 a/g) → 74/248 Mbps? (802.11n) → ...
- Catching up the throughput of wired access links...

Technologies:

▶ TDMA → FDMA → CDMA → OFDMA → MIMO+OFDMA
 → ...

Mobile Internet Access methods

Standard	Family	Primary Use	Radio Tech	Downlink (Mbps)	Uplink (Mbps)
<u>802.16e</u>	WiMAX	Mobile Internet	MIMO-SOFDMA	70	70
<u>HIPERMAN</u> WiBro	HIPERMAN WiBro	Mobile Internet Mobile Internet	<u>ofdm</u> ofdma	56.9 50	56.9 50
iBurst	iBurst 802.20	Mobile Internet	HC-SDMA	64	64
<u>UMTS</u> W-CDMA <u>HSDPA</u> + <u>HSUPA</u>	UMTS/3GSM	Mobile phone	<u>CDMA/FDD</u>	.384 14.4	.384 5.76
UMTS-TDD	UMTS/3GSM	Mobile Internet	<u>CDMA/TDD</u>	16	16
LTE UMTS	UMTS/4GSM	General 4G	<u>OFDMA/MIMO/SC-</u> <u>FDMA</u> (HSOPA)	>100	>50
1xRTT	CDMA2000	Mobile phone	CDMA	0.144	0.144
EV-DO 1x Rev. 0 EV-DO 1x Rev.A EV-DO Rev.B	CDMA2000	Mobile Internet	<u>CDMA/FDD</u>	2.45 3.1 4.9xN	0.15 1.8 1.8xN

802.11 Family

	802.11a	802.IIb	802.11g	802.lln
Speed	54Mbps	l I Mbps	54Mbps	74/248Mbps
Frequency	5 GHz	2.4GHz	2.4GHz	2.4 and/or 5Ghz
Tech.	OFDM	TDMA	OFDM	MIMO+OFDM
Indoor Range	25-75 feet	100-200 feet	100-200 feet	200-300 feet
Compatibility	Incompatible with b, g, n	Compatible with g and n	Compatible with b and n	Compatible with a, b, and g

Data Rate VS. Range

Spectrum – The Resources

NETVICE EXAMPLE DESCRIPTION Transm AVECE Captor Lances Reconstry Multion Vie Captor will leave specializes

U.S. DEPARTMENT OF COMMERCE

Attenuation (For Fixed Power)

Transmission range

- High SNR
- Low error rate
- Detection range
 - Mid SNR
 - Detecting wireless signal

Interference range

- Low SNR
- Signal adds to the interfered noise

Special Topic I:

Multiplexing Techniques

Multiplexing – Allowing Multiple Access

Four dimensions

- Time
- Frequency
- Space
- Code

Frequency Division Multiple Access (FDMA)

- Divide frequency band into small sub-band
- Each sub-band is a channel
- Example: IG

D

Time Division Multiple Access (TDMA)

- Divide time into small slots
- Each slot is a channel
- Need synchronization
- Example: 2G

D

k₁

 k_3

Frequency/Time Division Multiple Access (F/TDMA)

- Frequency-time is divided into small F/T block
- Channel is a series of block
- Need synchronization

Example: GSM

D

Code Division Multiple Access (CDMA)

- No division into sub-band/slot/block, use the entire frequency band any time
- Divide the signal space into many orthogonal sub-spaces, using orthogonal codes, assign each device one code
- Project the received signal to your space and decode
- No synchronization
- Example: IS-95, CDMA 2000, WCDMA...

Special Topic II:

Opportunistic Communications

Multipath Fading

D

Classical view: fading channels are unreliable

Modern view: multipath fading can be exploited to increase spectral efficiency.

Traditional Approach to Wireless System Design

Example: GSM/CDMA

Þ

- frequency diversity via Rake combining
- time diversity via interleaving and coding

Multipath Fading: Another Look

- Multipath fading provides high peaks to exploit.
- Channel capacity is achieved by such an opportunistic strategy.

Multiuser Opportunistic Communication

D

Application to CDMA 2000 1x EV-DO

- Multiuser diversity provides a system-wide benefit.
- Challenge is to share the benefit among the users in a fair way.

Symmetric Users

Serving the best user at each time is also fair in terms of long term throughputs.

Asymmetric Users: Hitting the Peaks

Want to serve each user when it is at its peak. A peak should be defined with respect to the latency time-scale t_c of the application.

D

Changes of View

Traditional view: fading is bad, constant is good

GSM/CDMA (IS-95)

D

- Modern view: fading can be exploited
- Not enough fading? \rightarrow introduce them in purpose

Dumb Antennas

The information bearing signal at each of the transmit antenna is multiplied by a time-varying phase.

Slow Fading Environment: Before

After

Dumb Antennas in Action: One User

Most of the time, the beam is nowhere near the user.

D

Many users: Opportunistic Beamforming

In a large system, there is likely to be a user near the beam at any one time.
By transmitting to that user, close to true beamforming performance is achieved, without knowing the locations of the users.

Conclusions

Wireless industry is ever growing

- Better technology with higher throughput
- Many tough and open engineering questions
- We need more good people (including your students!)