

機械人技術與人工智能(AI)編程

MarsAl × +		• - • ×	⊘ MarsAl × +		• - • ×
 ← → C ▲ 小安全 demoxmasterpool.cn:1800u/maex MarsAl 		x ₩ ₩ ₩ : A	← → C ▲ 小安全 demo.masterpool.cn:18000/index		R * * @ : ñ
Þ	次迎进入MarsAI 初次使用MarsAI? 您可以查查問到 或最後执行以下操作 使用有问题? 请进入 宫即中心			次迎进入MarsAI 初次使用MarsAI? 您可以直看把引或直接执行以下操作 使用有问题? 講进入 智能中心	
+' + * * - -		* *:	+' + '		* +:
1、标注管理	2、模型训练	3、模型发布	1、标注管理	2、模型训练	3、模型发布
在这重您可以创建任务,上传图 像/视频素材进行标注。	训络数提集,您可以获得一个新 的模型。	管理现有模型,您可以校验和应 用模型。	在这里您可以创建任务,上传圈 像/倪频素材进行标注。	训练数据集,您可以获得一个新 的模型。	管理现有模型,您可以校验和应 用模型。
进入标注管理	开始训练模型	模型库管理	进入标注管理	开始训练极型	极型库管理
日 ク @ @ @ @ @ @	首先创建标注任务	▲ 節 @ ● 户 ♥ ₩ ≤ 0 英 1203 國		第二步模型训练	∧ 🦛 🗑 💊 👂 👼 🝏 点 여) 英 1552 👼

機械學習例子Machine Learning

機械學習例子Machine Learning

機械學習例子Machine Learning

JI EDUCATION HUB

啟動規則

透過5個電子視覺標籤隨機產生一串由1~5 組成的隨機數,機械人需要在1米以外的距離, 按照1到5的順序依次擊中5個視覺標籤上方的裝甲模組,即可視為成功啟動。

啟動成功會有標記。成功啟動後,電子視覺
 標籤會顯示攻擊力加成視覺標籤,機械人識別
 到該視覺標籤後全隊獲得2倍攻擊力加成。

●實行方式一般分為兩種: ●第一種是「自動瞄準模組」(簡易) ●第二種是「PID 控制器」(進階)

以程式設計模組自動瞄準

怎樣使用自動瞄準模組來瞄準

● 智能大類—>「識別到(紅心)並瞄準」。

- 使用這個模組可以簡單地自動瞄準目標, 支援包
- 含圖形、數字和字母的視覺標籤。

智能

● 在程式中, 啟用視覺標籤識別後, 當視野中出現
 設定的視覺標籤後, 機械人可以自動瞄準。

需要注意:如果在執行自動瞄準模組時,機械人的視野中沒有需要瞄準的視覺標籤,將不會有相應的動作。

影響識別效果的情況

 ● 如果視覺標籤處於機械人視野中心,識別到的信息是準確的,但有其他情況會對 識別效果造成影響:

情況	旋轉	顛倒	透視	移動過快	光線不足	遮擋
	A	¥	A	A	A	A
影響	無影響	無影響	較大影響	較大影響	較大影響	無法識別

●實行方式一般分為兩種: ●第一種是「自動瞄準模組」(簡易) ●第二種是「PID 控制器」(進階)

獲取視覺標籤資訊

● 當我們啟用視覺標籤識別後,相應的模組「識別

 到的視覺標籤資訊」會傳回一系列的即時資訊,我

們可以將這些數據儲存在清單中。

與程式中的變數相同,清單資訊也會即時顯示在
 FPV 視窗中。按照下圖所示編寫程式,點擊執行後
 開啟 FPV 視窗,並讓視覺標籤出現在機械人的視野

當中再觀察:

機械人識別到視覺標籤後,傳回的數據以六個為一組,識別到多少視覺標籤就會傳回多少組數據,這些視覺信息還會實時更新。

視覺信息的格式

●創建一個名為「MarkerList」的列表來儲存 視覺標簽信息。每一個視覺標籤出現在視野時, 會產生 6 個特徵信息:

- 視覺標籤的數量
- 視覺標籤的 ID
- 標籤在視野中的橫坐標、縱坐標
- 標籤的寬度、高度

ROBOMASTER

例子一:1個標籤

Ν	ID_1	X_1	Y_1	W_1	H_1	ID_2	X_2	•••••	H_n
表示識別到 的視覺標籤 數目	第1個視覺 標籤的 ID	第1個視覺 標籤在視野 中的橫座標	第1個視覺 標籤在視野 中的縱座標	第1個視覺 標籤在視野 中的寬度	第1個視覺 標籤在視野 中的高度	第 2 個視 覺標籤的 ID	第2個視覺 標籤在視野 中的橫座標		第 n 個視 覺標籤在視 野中的高度

獲取視覺標籤資訊

視覺信息的格式

●創建一個名為「MarkerList」的列表來儲存 視覺標簽信息。每一個視覺標籤出現在視野時, 會產生 6 個特徵信息:

- 視覺標籤的數量
- 視覺標籤的 ID
- 標籤在視野中的橫坐標、縱坐標
- 標籤的寬度、高度

例子二:2個標籤

N	ID_1	X_1	Y_1	W_1	H_1	ID_2	X_2	Y_2	W_2	H_2	•••••	H_n
表示識別 到的視覺 標籤數目	第1個視 覺標籤的 ID	第 1 個視 覺標籤在 視野中的 橫座標	第1個視 覺標籤在 視野中的 縱座標	第1個視 覺標籤在 視野中的 寬度	第1個視 覺標籤在 視野中的 高度	第 2 個 視覺標 籤的 ID	第2個視 覺標籤在 視野中的 橫座標	第2個 視覺標 籤在視 野中的 縱座標	第2個視 覺標籤在 視野中的 寬度	第2個視 覺標籤在 視野中的 高度		第 n 個視 覺標籤在 視野中的 高度

ASK IDEA

(進階)使用 PID 控制器

	優點	缺點
PID 控制器	可以優化瞄準效 果,按照需求修 改自動瞄準射擊 的功能。	模組較多, 實行起來 比較複雜; 需要對 PID 控制器參數設定 有一定的基礎認識。

什麼是 PID 控制器

- PID 控制器是一個反饋控制部件,常用於溫 度控制、摩打控制等
- 什是是「反饋控制」?

執行一系列動作後,將實際結果和期望結果進 行比較,從而調整下一步行動

● 現實例子:

老師按特定方式授課 → 學生從課堂中學習 →
期望學生能掌握全部知識 → 以考試測量成效
→ 老師按照學生成績放慢 / 加快 / 維持往後講
解速度

什麼是 PID 控制器

- PID 控制器,由比例單元(P)、積分單元(I)和微分單元(D)組成
- 透過調整三個單元的增益數值 Kp 、Ki 和 Kd 來達到其特勻

模拟PID控制系统原理框图

PID 控制器的 P (Proportional) – 比例單元

- P (Proportional) 比例單元
- 透過增益數值 Kp 調控
- 最基礎、最常用
- 將誤差以比例放大來控制(雲台 / 摩打)
- Kp 愈大,反應速度愈快
- 例子 1:

Kp 過大 (例如 9999) 會令 PID 過份反應, 遍離控制

●例子 2:

PID 控制器的 I (Integral) – 積分單元 PID 控制器的 D (Derivative) – 微分單元

I (Integral) 積分單元

- 透過增益數值 Ki 調控
- 將誤差累積乘以 Ki,以消除誤差很小時 的左右 / ,上下抖動

● 例子:

D (Derivative) 微分單元

透過增益數值 Kd 調控

將誤差的變動乘以 Kd, 控制變動範圍

簡介 PID 控制器的模塊使用

• 使用此模塊將誤差輸入 PID 控制器中

• 獲得一次 PID 運算的輸出,每調用一次該模塊,就會根據當前誤差值重新 計算一次輸出

調控 PID 控制器

Kp、Ki、Kd 的數值需要透過不斷嘗試去找出理想設定值 ● 建議:

使用圖表記錄不同PID控制器參數下的表現,方便進行觀察及比較,例如:

Kp值	Ki值	Kd值	平均時間 (單位:秒)
108	1	4	6.0834
118	1	4	5.7544
128	1	4	5.3844
138	1	4	5.1072
148	1	4	5.751
148	1	14	4.9714
148	1	24	5.124
143	1	4	5.799
143	1	14	5.3226
143	1	24	5.1722
140	1	4	5.0334

(進階)使用 PID 控制器 – 程式

● 配置設定:

- 1. 創建所需 變數、表單、PID 控制器:
- X:用作儲存當時標籤的橫坐標,作計算用途
- Y:用作儲存當時標籤的縱坐標,作計算用途
- 創建表單 MarkerList , 用作儲存標籤資訊
- 創建 PID 控制器 Yaw (控制雲台左右旋轉)
 - 、Pitch (控制雲台上下旋轉)

ASK IDEA

(進階)使用 PID 控制器 - 程式 8238

- ●初始執行設定(只執行一次):
- 2. 開啟 視覺識別 及 自由模式 (雲台能單獨轉動 → 更快)
- 3. 設定 PID 控制器參數 Kp、Ki、Kd (透過不斷測試調整數值)

(進階)使用 PID 控制器 – 程式 800038

- 控制 (重複執行):
- 5. 獲取視覺標籤資訊 並 放入表單
- 6. 檢查標籤目標的資訊是否存在
- 7. 將橫坐標、縱坐標放入變數 X、

Ν	ID_1	X_I	Y_1	W_1	H_1
表示識別到 的視覺標籤 數目	第1個視覺 標籤的 ID	第1個視覺 標籤在視野 中的橫座標	第1個視覺 標籤在視野 中的縱座標	第1個視覺 標籤在視野 中的寬度	第1個視覺 標籤在視野 中的高度

● 控制(重複執行):

0.342

8. 計算標籤位置與中心點之誤差並將將誤差放入 PID 控制器計算

*Yaw*誤差: *X*-0.5; *Pitch*誤差: 0.5-*Y*

9. 以 PID 控制器的輸出轉動雲台

(0.5, 0.5)

巡線原理

目的: 讓機械人一直沿著指定路線前進

首先要讓機械人知道「線在哪」,需要通 過傳感器(視像鏡頭)獲取線的位置信息, 用顏色線來設置指定路線 巡線的目標是使機械人一直處於線的中間 位置,如有偏離則立即自我調整

場地自動引導線地圖

在青少年挑戰賽中開始的頭一分鐘内,
 地面機械人可以自動執行按照事先預定的
 程式,透過循線和岔路判斷到達特定地點
 執行特定動作,並且為比賽的手動操作階
 段作好準備。

路線資訊檢視

在程式中, 啟用視線識別後, 當視野中出現設定的顏色線路資訊後, 機械人可以傳回線路資訊, 並將線路資訊儲存於表單 LineList。

體驗活動:

- 編程使用列表記錄下藍線的數據
- ・ 使用FPV介面觀察列表中的數據

狀態 _{固定模} 雲台路	_式 拫隨底盤模式	速度 2.4m	ı/s	俯仰 20.0°	航向 10.0°
變量					
LineL	.ist			長周	き: <mark>42 ^</mark>
1	10		2	1	
	0.503125			0.794444	
5	-3.598248		6	0	
	0.503125		8	0.766667	
9	-4.580367		10	-0.032737	
11	0.5		12	0.738889	
13	-0.700007		14	-0.700007	
15	0.5		16	0.711111	
17	-0.700007		18	0.002858	
19	0.5		20	0.683333	
21	-5.397032		22	-0.156504	
23	0.496875		24	0.655556	
25	-3.591615		26	0.056703	
27	0.496875		28	0.627778	

ASK IDEA

路線資訊分析

狀態 ^{固定模} 雲台3	_式 拫隨底盤模式	速度 2.4	m/s	俯仰 20.0°	航向 10.0°
變量					
LineL	.ist			長度	: 42 ^
1	10		2	1	
3	0.503125		4	0.794444	
5	-3.598248		6	0	
7	0.503125		8	0.766667	
9	-4.580367		10	-0.032737	
11	0.5		12	0.738889	
13	-0.700007		14	-0.700007	
15	0.5		16	0.711111	
17	-0.700007		18	0.002858	
19	0.5		20	0.683333	
21	-5.397032		22	-0.156504	
23	0.496875		24	0.655556	
25	-3.591615		26	0.056703	
27	0.496875		28	0.627778	

- ・ 當機械人識別到線路後,會傳回共 42 項數據,
 這 42 項數據分別為:
- 1. 線上點的數量
- 2. 線路類型
- 3.~42. 10 個點 (視野中由下至上從線路等距 提取)的座標和角度資訊等詳細數據

	數據分析	•		
LineL	ist		長度:42・	~
1	10	2	1	
3	0.503125	4	0.794444	
5	-3.598248	6	0	
7	0.503125	8	0.766667	
9	-4.580367	10	-0.032737	
11	0.5	12	0.738889	
13	-0.700007	14	-0.700007	
15	0.5	16	0.711111	
17	-0.700007	18	0.002858	
19	0.5	20	0.683333	
21	-5.397032	22	-0.156504	
23	0.496875	24	0.655556	
25	-3.591615	26	0.056703	
27	0.496875	28	0.627778	

●第一項數據: N 點數目,預設為 10 或 0; 10代表識別到了線路,0代表識別不到線路。

第二項數據: |代表線路類型:數字0代表沒有識別到線路,1、2和3分別對應三種線路的情況,如下圖所示;我們可以根據傳回的值確定目前的線路情況,從而作出選擇。

數據分析:

				(0,0)	x1 ~ x10	\rightarrow
LineList		長度:	42 ^		(x10 x	10)
1 10	2	1			(x10,y) (x9,y9)	10)
3 0.503125	4	0.794444			(x8,y8)	
5 -3.598248	6	0		v1	······	
7 0.503125	8	0.766667		yı	(x6,y6)	
9 -4.580367	10	-0.032737		v10	····	
11 0.5	12	0.738889		y lo	(x0,y0)	
13 -0.700007	14	-0.700007			(x4,y4)	
15 0.5	16	0.711111			(××3,y3)	
17 -0.700007	18	0.002858			(x2,y2)	
19 0.5	20	0.683333			·····	
21 -5.397032	22	-0.156504		Υ		(1,1)
23 0.496875	24	0.655556				
25 -3.591615	26	0.056703				
27 0.496875	28	0.627778				

路線資訊分析

- 接下來的數據項目以四個數據為一組,分別 代表視野中十個點的橫向座標 x,縱向座標 y、 實際切線角 θ 以及曲率 C;第三至第六位代表 的就是第一個點的這四項數據,第七至十位就 是第二點,如此類推。
- <u>第1個點</u>位於視野<u>最下端</u>,也就是<u>最接近</u>機 械人的點。
- 機械人視野為十字坐標系統,視野左上角為
 (0,0),右下角為(1,1)

路線資訊分析

- 當切線角為 0 時, 意味着此點所在的線路為 直線; 切線角為 90 時, 證明此點所在的線路 非常彎曲。
- 外接圓越小,證明此點附近的線路弧度較大;
 外接圓越大,證明此點附近的線路弧度越小
 傳回的值 c=k/R 中,數據經過處理,取值範
 圍為 1-10; 1 證明弧度小, 10 證明弧度很大。

實行巡線主要分為兩個技術點

• 實行巡線主要分為兩個技術點:

控制系統	Α	В
建構方向控制系統	比例控制	PID 控制器
建構速度控制系統	低速固定速度	根據彎度調速

● 編程分析:

 主要是使用底盤跟隨雲台模式,控制雲台轉動使 線路保持在路線中央。
 有關步兵機械人巡線部分的程式設計操作,可以

參考大師之路第7關。

- 編程分析:
- 配置設定
- 1. 創建所需 變數、表單、PID 控制器:
- V_average: 平均速度
- V: 計算後的移動速度
- K: 用作根據切線角調節速度的比例系數
- X:用作儲存當時標籤的橫坐標,作計算用途
- 創建表單 LineList,用作儲存線的資訊
- 創建 PID 控制器 Follow_Line (控制雲台左右旋轉)

設定 PID 控制器 Follow_Line ▼ 的參數 Kp 0 Ki 0 Kd 0

	大	小
V_average	速度快	速度慢
К	速度變化大, 但穩定	速度均匀, 但容易出界

- 初始執行設定(只執行一次):
- 2. 設定速度控制常數: V_average 和 K
- 3. 設定雲台跟隨底盤模式(保持鏡頭向前)
- 4. 雲台向下 20 度 (望向地上的線)
- 5. 開啟線識別
- 6. 設定 PID 控制器參數 Kp、Ki、Kd

(透過不斷測試調整數值)

ASK IDEA

數據分析:

				(0,0)		
ineList		長度:	42 ^			0)
1 10	2	1			(x10,y1) (x9,y9)	J
3 0.503125	4	0.794444			····· (x8,y8)	
5 -3.598248	6	0		v1		
7 0.503125	8	0.766667		y	(x6.v6)	
9 -4.580367	10	-0.032737		v10	····	
11 0.5	12	0.738889		y io	(x3,y5)	
13 -0.700007	14	-0.700007			2 (x4,y4)	
15 0.5	16	0.711111			(×3,y3)	
17 -0.700007	18	0.002858			(x2,v2)	
19 0.5	20	0.683333			······ (v1 v1)	
21 -5.397032	22	-0.156504		Y	(x 1, y 1)	
23 0.496875	24	0.655556				
-3.591615	26	0.056703				
27 0.496875	28	0.627778				
	An A					

● 控制 (重複執行):

12. 設置 PID 誤差值

13. 以 PID 輸出作雲台追蹤控制

14. 計算 並 輸出速度控制

● 常式分析:

與步兵機械人執行巡線不同的是,由於**工程機械人** <u>沒有雲台</u>,所以**不可以使用雲台旋轉與底盤跟隨雲** <u>台</u>的模式,需要<u>使用底盤直接旋轉</u>。

- 編程分析:
- 配置設定 (與步兵機械人一樣)
- 1. 創建所需 變數、表單、PID 控制器:
- V_average: 平均速度
- V: 計算後的移動速度
- K: 用作根據切線角調節速度的比例系數
- X:用作儲存當時標籤的橫坐標,作計算用途
- 創建表單 LineList,用作儲存線的資訊
- 創建 PID 控制器 Follow_Line (控制<u>底盤</u>左右旋轉)

Follow_Line - 的參數 Kp (0) Ki (0) Kd (0)

設定 PID 控制器

- 初始執行設定(只執行一次): (與步兵機械人相似)
- 2. 設定速度控制常數: V_average 和 K 設定雲台跟隨底盤模式

雲台向下 20 度(望向地上的線)

- 3. 開啟線識別
- 4. 設定 PID 控制器參數 Kp、Ki、Kd

(透過不斷測試調整數值)

● 控制(重複執行):

