

This is an interesting problem which demonstrates the power of Mathematics in the daily life applications. This shows that Mathematics is not just textbook exercise.

Step 1

Ask the students to measure the dimensions of a packet of XX Lemon Tea (250 ml).
The answers (approximate) are listed as follows:

Length = \qquad cm
Height = \qquad cm
Width = \qquad cm

Step 2

Ask the students why the dimensions must be \qquad .
The possible answer is that the manufacturer tries to minimize under the constraint that the volume must be \qquad .

Step 3

Let the length, height and width be $y \mathrm{~cm}, 1.6 y \mathrm{~cm}$ and $x \mathrm{~cm}$ respectively.
(Remarks: The ratio $\frac{\text { height }}{\text { length }}=1.618033989 \ldots$ which is the golden ratio)
For the sake of simplicity, we use 1.6 as an approximated value.

Step 4

From 3, we have $y \times 1.6 y \times x=250 .\left({ }^{*}\right)$
Using $\left({ }^{*}\right)$, prove that length $=\frac{25}{2 \sqrt{x}} \mathrm{~cm}$, height $=\frac{20}{\sqrt{x}} \mathrm{~cm}$ and width $=x \mathrm{~cm}$.

Step 5

Let the total area be $A \mathrm{~cm}^{2}$.
(a) Prove that $A=2 \times\left(\frac{25}{2 \sqrt{x}}+x\right)\left(\frac{20}{\sqrt{x}}+x\right)$.
(b) Prove that $A=2 x^{2}+65 \sqrt{x}+\frac{500}{x}$.

Step 6

Ask the students to find $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(2 x^{2}+65 \sqrt{x}+\frac{500}{x}\right)$ and use differentiation to find the minimum value of A and determine the corresponding dimensions of the packet of lemon tea. Make sure you check the answers by means of the first derivative test or the second derivative test.

