
Gifted Education School Network 2021/22

STEAM Education

Level	Secondary 4		
Торіс	Unit 2: Atmosphere		
Lesson Duration	1 hour (a double lesson)		
Class size	32 students		
Learning	Knowledge		
Objectives	• To apply factors affecting the combustion of candle wax in an unfamiliar		
	condition.		
	Skill		
	• To analyse and interpret experimental data and form a justified claim.		
	• To evaluate and revise hypotheses based on new empirical findings.		
	Values and attitude		
	• To appreciate the nature of scientific inquiry and discovery.		
Prior knowledge	Composition of air	• Conditions required for burning	
of students	• Tests for oxygen and carbon dioxide	• Word equation of burning fuel	
Highlights of this	This lesson is designed to exemplify the use of a jigsaw cooperative learning		
exemplar	strategy using a prediction-observation-explanation (POE) inquiry model. When		
	candles of different lengths are ignited under a closed system, the longest candle		
	will go out first. It is because the hot carbon dioxide rises and accumulates near		
	the longest candle. The experimental result may contradict students' predictions		
	as they may think that the burning time depends solely on the amount of fuel.		
	This lesson allows students to discuss what they think will happen in the closed		
	system. They are arranged in expert groups to collect new evidence in 4 learning		
	stations. Finally, students are arranged in jigsaw groups to share their empirical		
	findings and write an explanation for what they have seen. The lesson design		
	helps nurture creativity and higher-order thinking skills among gifted/ more able		
	students.		
Differentiation	Jigsaw cooperative learning strategy		
Strategies	Learning stations		
employed	Tiered assignments		

Acknowledgements: This lesson example was adapted/adopted from the tryout by Ms HO Ka-yee of Homantin Government Secondary School

Activities		Rationales for Implementation
1. Introduction (5 mins)		Teacher can check students' understanding
	Teacher asks students to recall the fire triangle and	of basic knowledge of the topic.
	chemical tests for oxygen and carbon dioxide.	
2.	Setting the scene (10 mins)	Teacher should be open to students' ideas
	Teacher introduces the practical of igniting candles	and he/ she should not judge the correctness
	of different lengths in a closed system. Students	of students' predictions at this stage. Teacher
	discuss and write down their predictions about the	can ask students to use scientific ideas to
	candle that would go out first. They then observe the	explain their predictions. Scientifically
	experimental result to see if it matches their	gifted/ more able students can be invited to
	prediction.	comment on ideas made by their classmates.
		It is anticipated that most students will be
		surprised by the experimental result. This
		can enhance students' curiosity to
	A B C (Fig. 1)	investigate the phenomenon.
3.	Development (20 mins)	Students are assigned to different expert
	Students are divided into groups of four students.	groups based on students' readiness.
	Each student in a group is assigned a worksheet of	Learning stations A and B are more
	different learning stations. Each group has one	appropriate for the average students, whereas
	student responsible for a learning station. This forms	learning stations C and D are more
	a jigsaw group. Students read and study the	appropriate for the scientifically gifted/ more
	worksheets individually.	able students. The learning stations provide
	After each student has studied his or her worksheet	students with different learning experiences
	independently, they gather with other students who	such as hands-on activity, graphical analysis,
	have been assigned to the same learning station. This	and quantitative observation. It can facilitate
	forms an expert group. In each expert group,	the development of multiple intelligences
	students work together to collect new evidence	among gifted/ more able students.
	about the candle investigation. Students are	The activity in each learning station is
	reminded of wearing safety goggles during the	cognitively demanding. Students need to
	lesson. Learning tasks in each learning station are	work closely in each expert group in order to
	described below:	make sense of the experimental findings. It
		helps nurture creativity and higher-order

scientific explanation of why the longest candle goes			
out first. Teacher walks around and facilitates group			
interactions in each jigsaw group.			
5. Conclusion (10 mins)	Students are encouraged to exchange their		
Teacher invites students to share their explanations	ideas with different groups and evaluate		
and evaluate their responses.	explanations made by other jigsaw groups.		
Materials			
Worksheets for each learning station			
References			
Cheng, M. W. (2006). Learning from students' performance in chemistry-related questions. In B. H.			
W. Yung (Ed.), Learning from TIMSS: Implications for teaching and learning science at the junior			
secondary level (pp. 51–74). Hong Kong: Education and Manpower Bureau.			
Jolliff, T. (2007). Chemistry for the gifted and talented. Royal Society of Chemistry.			