Experimental Question

Sample (3)

The Magical Sierpinski Triangle and Carpet Glossary:

* Before attempting the questions, you are advised to read Definitions 1-3 below for better understanding of the questions.

1. The definition of Sierpinski Triangle:

	T ₀ is a solid equilateral triangle.
T ₀	
	On the solid equilateral triangle T_0 , join the mid points on each
	of its sides so that the solid equilateral triangle is divided into 4
	smaller triangles.
	Remove the small triangle at the centre, which is the white part
T_1	in the figure on the left.
	The new shape is called <u>Triangle T</u> $_1 \circ$
	On each solid equilateral triangle in T_1 , join the mid points on
	each of its sides so that the solid equilateral triangle is divided
	into 4 smaller triangles.
	Parava the small triangle at the control which is the white part
Та	in the figure on the left
12	in the figure on the feft.
	The new shape is called <u>Triangle T</u>₂ \circ
A	On each solid equilateral triangle in T ₂ , join the mid points on
	each of its sides so that the solid equilateral triangle is divided
	into 4 smaller triangles.
	Remove the small triangle at the centre, which is the white part
13	in the figure on the left.
	The new shape is called <u>Triangle T</u>₃ \circ

On each solid equilateral triangle in T_3 , join the mid points on each of its sides so that the solid equilateral triangle is divided into 4 smaller triangles.

Remove the small triangle at the centre, which is the white part in the figure on the left.

The new shape is called <u>**Triangle T**₄ \circ </u>

*In summary, by applying the "dividing and removing" process once, we get T_1 . By applying the process twice, we get T_2 . By applying the process three times, we get T_3 . By applying the process n times, we get T_n . By applying the process infinitely, we get a Sierpinski Triangle, which is T_{∞} . (" ∞ " means infinity)

Glossary (cont.)

2. The definition of Sierpinski Carpet:

C ₀	C ₀ is a solid square.
	Divide the solid square C₀ into 3×3 = 9 smaller equal squares.Remove the small square at the centre, which is the white part in the figure on the left.
C1	The new shape is called <u>Sqaure C</u> $_1 \circ$
	Divide each solid square in C₁ into 3×3 = 9 smaller equal squares.Remove the small square at the centre, which is the white part in the figure on the left.
C ₂	The new shape is called Sqaure C ₂ \circ

	Divide each solid square in C_2 into $3 \times 3 = 9$ smaller equal squares. Remove the small square at the centre, which is the white part in the figure on the left.
C ₃	The new shape is called <u>Sqaure C_3</u> \circ
	Divide each solid square in C₃ into 3×3 = 9 smaller equal squares.Remove the small square at the centre, which is the white part in the figure on the left.
C_4	The new shape is called <u>Sqaure C_4</u> \circ

*In summary, by applying the "dividing and removing" process once, we get C_1 . By applying the process twice, we get C_2 . By applying the process three times, we get C_3 . By applying the process n times, we get C_n . By applying the process infinitely, we get a Sierpinski Carpet, which is C_{∞} . (" ∞ " means infinity)

Glossary (cont.)

3. The definition of dimension (D):

In Mathematical Physics, the mass of a one dimensional object has a linear relationship with its length. This means that if the length becomes 2 times of the original length, the mass will become $2^{D}=2^{1}=2$ times of the original mass. That is D=1.

An iron wire is a one dimensional object. It is because when the length of the iron wire becomes two times of the original length, the mass of the wire will become 2 times of the original mass. That is $2^1=2$. e.g.

length = 1 cm \cdot mass = 1 g

length = 2 cm, mass = 2 g

The mass of a two dimensional object has a square relationship with its length. This means that if the length becomes 2 times of the original length, the mass will become $2^{D}=2^{2}=4$ times of the original mass. That is D=2.

Experimental Question

Sample (3)

A wooden equilaterial triangular board is a two dimensional object. It is because when the length of the wooden board becomes two times of the original length, the mass of the wooden board will become 4 times of the original mass. That is $2^2=4$.

length of the side = 1 cm \cdot mass = 1 g mass = 4 g

e.g.

The mass of a three dimensional object has a cubic relationship with its length. This means that if the length becomes 2 times of the original length, the mass will become $2^{D}=2^{3}=8$ times of the original mass. That is D=3.

A plastic cube is a three dimensional object. It is because when the length of the cube becomes two times of the original length, the mass of the cube will become 8 times of the original mass. That is 2^3 =8.		
e.g.		
length of the side = 1 cm \cdot mass = 1 g	length of the side = 2	
cm,mass = 8 g		

*Therefore the dimensions of usual objects are 1, 2 or 3. However, there are some objects whose dimensions are not equal to these three numbers.

Experimental Question

Sample (3)

The Magical Sierpinski Triangle and Carpet Question:

Experimental Apparatus:

A plastic plate with a hollow equilateral triangle (side length of triangle = 5cm), some rice, a ruler, some paper, a calculator

Answer the following questions:

(a) By using the apparatus provided, estimate how many pieces of rice can fill up, as much as possible, an equilateral triangle with side length of 5 cm.Answer:

(b) Estimate how many pieces of rice can fill up, as much as possible, an equilateral triangle with side length of 10 cm.

Answer:

(c) Use an equilateral triangle with side length of 640 cm to make a Triangle T_k (Refer to Definition 1, Glossary). If the side length of the smallest black triangle in T_k cannot be shorter than 4 cm, calculate the value of K and estimate how many pieces of rice can fill up, as much as possible, the black part of Triangle T_k with side length of 640 cm.

Answer:

(d) Use an equilateral triangle with side length of 640 cm to make a Triangle T_m (Refer to Definition 1, Glossary). If the smallest back triangle in T_m can still be filled up, as much as possible, by rice (but T_{m+1} cannot be filled up by rice), calculate the value of m and estimate how many pieces of rice can fill up, as much as possible, the black part of Triangle T_m with side length of 640 cm.

Answer:

(e) Use an equilateral triangle with side length of 512 cm to make a Triangle T_n (Refer to Definition 1, Glossary). If the side length of the smallest black triangle in T_n cannot be shorter than 8 cm, estimate how many pieces of rice can fill up, as much as possible, the black part of Triangle T_n with side length of 512 cm.

Answer:

 (f) Estimate or calculate the dimension of a Sierpinski Triangle (i.e. T_∞; refer to Definition 1, Glossary), correct to 2 decimal places.
Answer:

(g) Estimate the total area of the black part of a Sierpinski Triangle (i.e. $\mathsf{T}_{\scriptscriptstyle\infty}).$ Answer:

- (h) Which has a higher dimension, Sierpinski Triangle or Sierpinski Carpet (Refer to Definition 2, Glossary)? Why?Answer:
- (i) There are other forms of Sierpinski Carpet, e.g.,

Construct a Sierpinski Carpet which has the same dimension as a Sierpinski Triangle.

Answer:

 (j) Construct another Sierpinski Triangle which has a dimension different from that of the original Sierpinski Triangle (i.e. the Sierpinski Triangle mentioned in Definition 1, Glossary).

Answer:

End of Paper