# Education Bureau Curriculum Support Division School－based Curriculum Development（Secondary）Section School Sharing（2022／23） 

Mathematics Education

Promoting e－learning in Mathematics to develop students＇ability to inquire and cater for learner diversity

Pui Kiu College
塔腊書院
Mr Ng Yiu Fai，Ms Chow Yi Wing，Mr Jeremy Wong

## School Background

- Co-educational DSS School
- EMI
- Major Concerns:
- Through-train School


Curriculum and
Enhance the
Curriculum
Acquaintance of


- e-Learning Lesson Plağ . Positive Values
- Game Activities
- Origami
- Inquiry and Investigation
- Linkage between knowledge and daily life
- Appreciation of knowledge and individuals


## Triple E Framework



Source : https://www.tripleeframework.com/

## Use of e-Learning Tools for Inquiry and Investigation

- "The dynamic geometry software facilitates the inquiry and investigation in many geometry topics in the Mathematics curriculum."
- "With the help of IT tools, students can easily plot graphs for visualising mathematical relations, propose conjectures and make connections between different areas of mathematics."

Source: Mathematics Education Key Learning Area Curriculum Guide (Primary 1 - Secondary 6) (2017), p. 65


## S1 Introduction to Geometry

## Learning Objectives

- Students are able to perform some basic geometric constructions by using e-tools.
- Students are able to discover geometric properties by using e-tools.

```
Developing students' ability to inquire
```


## Professional development of Teachers

1. Acquire skills for utilising e-learning tools to:

- enhance student engagement
- help students explore geometric properties

Developing students' ability to inquire

- make good use of electronic assessment data and provide immediate feedback

2. Design lessons to cater for students' diversified learning needs
```
Catering for learner diversity
```

- Tiered tasks
- Multiple solutions to a single problem


## Pre-lesson e-Learning Tasks

- Revision on different types of angles
- Introduction to the use of e-learning tool to inquire and investigate
- Measuring the size of an angle using the protractor
- Copying line segments
- Drawing perpendicular lines

Developing students' ability to inquire before the lesson

- Hiding unnecessary lines


Copying line segments


Drawing perpendicular lines


Construct Transform
Hide Delete
Hiding unnecessary lines

## e-Learning Tasks During Lesson

Revision on types of angles (1) Drag the purple points to sort the angles into their proper places.


Assessing students' prior knowledge by engaging them in diversified e-learning tasks

## e-Learning Tasks During Lesson

Sort the cards into 6 piles so that the picture and definition match the words on the blue cards.


## e-Learning Tasks During Lesson

Problem-solving tasks

- Draw an angle with specific size (e.g. $30^{\circ}, 60^{\circ}, 90^{\circ}$ ).
- Draw triangles satisfying specific conditions.

[^0]Catering for learner diversity

- Tasks with different levels of difficulty
- Two tasks chosen by students


## Students' Learning Outcome

Task 1.4: 3. A right-angled $\Delta$ with an interior angle $60^{\circ}$


## 24 of $48 \quad$ Next > <br> Problem-solving skills

- Students can construct triangles using different strategies.


Task 1.4: 3. A right-angled $\Delta$ with an interior angle $60^{\circ}$


## Students＇Learning Outcome


－Student 38 of 53
䊽 囲 另
Task 1．3：Try to＂trisect＂a Right Angle（Divide the right angle into 3 equal parts）


## e-Learning Tasks During Lesson

Inquiry and Investigation

- Angle sum of "reflex angles" of a triangle
- Angle sum of a quadrilateral
- Angle sum of "reflex angles" of a quadrilateral

Catering for learner diversity

- Tasks with different levels of difficulty


Developing students' ability to inquire

- Students may
- measure the size of each angle to find the angle sum of a specific quadrilateral;
- move the vertices to observe the angle sum of a quadrilateral;
- draw auxiliary line segments and use the fact about angle sum of triangle to find the angle sum of a quadrilateral.


## Evaluation using Triple E Framework

| Engagement | - Evaluation <br> - This can be achieved through the use of interactive e-learning tasks, as well <br> as through collaborative activities that encourage communication and <br> teamwork among students. |
| :--- | :--- | :--- |
| Enhancement | - Through the problem solving tasks, students develop a deeper <br> understanding of the properties of equilateral triangles. |
|  | - Students are allowed to demonstrate their understanding of geometry using <br> the platform of the e-learning tool. |
| Extension | - Using the platform, students can further investigate the properties about <br> the angle sum of a polygon. |

## Teacher's Reflection (Catering for learner diversity)

## Student engagement:

- Students use e-learning platforms to complete diversified e-learning tasks.
- Students are allowed to express their reflections on the learning process in different forms.


## Tiered tasks:

- Learning tasks are designed with different levels of difficulty (including challenging questions).
- Students are allowed to choose the problems they want to solve in the e-platform according to their interests/abilities.


## Multiple solutions:

- Students are allowed to use different methods to draw angles.
- Students have chances to present their way of thinking through the e-platform. Teachers can show students' works easily and facilitate further discussion among students.

How are you feeling about your ability to apply the properties using regular polygon? Slide to the right if you feel confident. Slide to the left if you don't feel confident.

If you'd like, say more about your response below.
$\Delta$ : $\sqrt{6}$


Proper use of e-learning tools and careful design of e-learning tasks can cater for learner diversity effectively.

## Teacher's Reflection (Inquiry and insetigation)

## Helping students explore geometric properties using e-learning tools:

- Students use the e-learning tools to observe patterns and make conjectures about the geometric properties.
- Students use the e-platform to explain their conjectures.

Explore more properties
We know that angle sum of triangle $=180^{\circ}$
Then, how can we apply this fact to find the angle sum of a quadrilateral?
(Besides measuring :D)


The dynamic geometry software facilitates the inquiry and investigation in many geometry topics in the Mathematics curriculum.

## Heachers Refection（Effectiveness of e－learning strategies）

## Utilising electronic assessment data to provide immediate feedback：

－Teacher uses the data in the pre－lesson e－learning task to understand whether students have mastered the drawing skills．

```
Tax\mp@code{max mum}
```



```
7806（W）
```



－Based on students＇performance in the e－learning activities，teacher understands how students think Response Box．

```
Rempones Summay
```

7825 Whax
900
－ T\％
$116+64+116+122+58+122+122+58+122$
$\square 7806$ NㅔN․․․․․
$(360-44)+(360-63)+(360-73)$
78 19 雷机数 mathematically and provides immediat $\epsilon$
feedback（asking and probing questions）．

The use of e－assessment can enhance learning and teaching by providing instant feedback to both students and teachers．

## S2 Trigonometric Ratios

## Learning Objectives

- Understand the properties of trigonometric ratios
$\downarrow$ effect of angle size on the ratios $(x \uparrow, \sin x \uparrow)$
- Suitable resources found
- Use trigonometric ratios to solve problems involving plane figures
- Find the length of sides of a right-angled triangle using trigonometric ratios


## About Target Students

- Students recognised the definition of trigonometric ratios.
- Students wereweaker in Mathematics in general.
- Adjust students' learning pace
- Collect/show students' responses and give feedback in a timely manner


## Part I: Investigate the Properties of Trigonometric Ratios

- GeoGebra

- Effect of angle size on the ratios
- Range of values of trigonometric ratios

Students can point out the change in the length of sides. Some students cannot relate them to the change in the ratios.

When we drag the slide
The hypotenuse remain the same
The opposite side increases
The adjacent side decreases


1 side extend, elongated
1 side become short short

## $\square$

H remain unchanged
A forward=decreases or backward=increases
O forward=increases or backward=decreases
when I drag the slide
the opposite side increase
the adjacent side decrease

## Part I: Investigate the Properties of Trigonometric Ratios

- GeoGebra

- Effect of angle size on the ratios
- Range of values of trigonometric ratios



## Part II: Finding length of sides

- Finding the length of a side by observation
- Identifying the correct ratio used
- Using $0<\sin \theta<1$ and $0<\cos \theta<1$ to determine whether the operation $\times / \div$ should be used
- Considering the angle " $48^{\circ}$ "
- The hypotenuse is given and the opposite side is to be found. Thus the sine ratio should be used.
- Note that $\sin 48^{\circ}<1$. Thus $5 \sin 48^{\circ}<5$ and $\frac{5}{\sin 48^{\circ}}>5$. As the opposite side is shorter than the hypotenuse, the correct answer should be $5 \sin 48^{\circ}$.



## Application of the properties of

 trigonometric ratios to solve problems
## Part II: Find the length of sides

- Finding the length of a side by observation
- Identifying the correct ratio used
- Using $0<\sin \theta<1$ and $0<\cos \theta<1$ to determine whether the operation $\times / \div$ should be used
- Solving harder problems by adding auxiliary lines to form right-angled triangles
- Acute-angled triangle
- Obtuse-angled triangle



## Part II: Find the length of sides

- Finding the length of a side by observation
- Identifying the correct ratio used
- Using $0<\sin \theta<1$ and $0<\cos \theta<1$ to determine whether the operation $\times / \div$ should be used
- Solving harder problems by adding auxiliary lines to form right-angled triangles
- Acute-angled triangle
- Obtuse-angled triangle



## Evaluation - Engagement



Self-practice

Challenging
Motivated

- Hands-on Tasks


## Evaluation - Engagement



## Areas for improvement <br> - Peer-peer interaction <br> - Discussion

## Evaluation - Enhancement

- Understand the properties of trigonometric ratios
- effect of angle size on the ratios $(x \uparrow, \sin x \uparrow)$
range of values of trigonometric ratios $\left(0<\sin x<1\right.$ for $\left.0^{\circ}<x<90^{\circ}\right)$
- Use trigonometric ratios to solve problems involving plane figures

Find the length of sides of a right-angled triangle using trigonometric ratios


- Simple
- More elaboration on the geometric meaning of the trigonometric ratios


Connection between Part I and Part II could be strengthened to enhance students' understanding about the properties of trigonometric ratios.

## Evaluation - Extension

- Finding height of obtuse-angled triangles
- Collect feedback instantly using e-platform
- Choosing a proper vertex is crucial to problem-solving
- May add a simple matching task
- More properties/ identities of trigonometric ratios
- By observations only
- Elaboration on geometric meaning
- Create platform for students to share their idea
- Other possibilities?
- Trigonometric ratios when $\theta=0^{\circ}$ or $\theta=90^{\circ}$



## Evaluation - Extension

- Finding height of obtuse-angled triangle
- Collect feedback instantly
- Choosing a proper vertex is crucial to problem-solving
- May add a simple matching task
- More properties/ identities of trigonometric ratios
- By observations numerical values only
- More elaboration using the geometric interpretation
- Create a platform for students to share their idea
- Other possibilities?
- Values of trigonometric ratios when $\theta=0^{\circ}$ or $\theta=90^{\circ}$

Check the following boxes if the equation is true.

## (Select all that apply.)

$\square \sin \left(\theta+30^{\circ}\right)=\sin \theta+\sin 30^{\circ}$$\sin ^{2} \theta+\cos ^{2} \theta=1$$\tan \theta=\frac{\sin \theta}{\cos \theta}$$\sin \theta+\cos \theta=\tan \theta$$\sin 2 \theta=2 \sin \theta$

## Catering for learner diversity

- Adjust the learning pacing in e-platform
- Students have the freedom to choose the suitable question according to their level
- Assessing students' learning using e-platform
- Respond/follow up timely
- Sharing students' work using e-platform
- Engagement


## Reflections

- Mixed use of diversified learning tools
- "Think out of" the iPad
- Consider the learning needs of users(students)
- Student-centered
- Peer-peer interaction


## Way forward

To develop students' ability to inquire and cater for learner diversity, teachers could capitalise their efforts on

- designing diversified learning tasks to engage, enhance and extend student learning;
- making further use of e-learning tools to promote interactive learning and foster student engagement and participation; and
- strengthening knowledge management for disseminating good practices of learning and teaching strategies.

End


[^0]:    ().) ()) Congratulations! Now you can draw a 30 degree, 60 degree or 90 degree angle using the Desmos tools!

    1. An obtuse-angled $\Delta$ with an interior angle $120^{\circ}$
    2. An obtuse-angled $\Delta$ with an interior angle $60^{\circ}$
    3. A right-angled $\Delta$ with an interior angle $60^{\circ}$
    4. An isosceles $\Delta$ with an interior angle $120^{\circ}$
